scholarly journals Molecular Dynamics Simulation of Dislocation Plasticity Mechanism of Nanoscale Ductile Materials in the Cold Gas Dynamic Spray Process

Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1079
Author(s):  
Sunday Temitope Oyinbo ◽  
Tien-Chien Jen

The dislocation plasticity of ductile materials in a dynamic process of cold gas spraying is a relatively new research topic. This paper offers an insight into the microstructure and dislocation mechanism of the coating using simulations of molecular dynamics (MD) because of the short MD simulation time scales. The nano-scale deposition of ductile materials onto a deformable copper substrate has been investigated in accordance with the material combination and impact velocities in the particle/substrate interfacial region. To examine the jetting mechanisms in a range of process parameters, rigorous analyses of the developments in pressure, temperature, dislocation plasticity, and microstructure are investigated. The pressure wave propagation’s critical function was identified by the molecular dynamics’ simulations in particle jet initiation, i.e., exterior material flow to the periphery of the particle and substrate interface. The initiation of jet occurs at the point of shock waves interact with the particle/substrate periphery and leads to localization of the metal softening in this region. In particular, our findings indicate that the initial particle velocity significantly influences the interactions between the material particles and the substrate surface, yielding various atomic strain and temperature distribution, processes of microstructure evolution, and the development of dislocation density in the particle/substrate interfacial zone for particles with various impact velocities. The dislocation density in the particle/substrate interface area is observed to grow much more quickly during the impact phase of Ni and Cu particles and the evolution of the microstructure for particles at varying initial impact velocities is very different.

Author(s):  
Hong Gao ◽  
Liangju Zhao ◽  
Danling Zeng ◽  
Lijuan Gao

Cold gas spray is a relatively new coating technique by which coatings can be formed without significant heating of the sprayed powder. In contrast to the conventional thermal spray processes, such as flame, arc, and plasma spraying, in cold spraying there is no melting of particles prior to impact on the substrate. In cold spray, particles are accelerated to a very high velocity by a flowing gas with supersonic speed and the temperature of spray particles is much lower than its melting point. However, being accomplished in so short an interval, the impact and deposition processes are difficult to be observed by experimental ways. Using molecular dynamics simulation, the deposition of nano-scale Au clusters on Au (001) surface was studied. The many-body potential is used to simulate the interatomic force between the atoms. By taking “snapshot”, the impact, deposition process and the final appearances of the cluster and the substrate were observed directly. It is found that both the substrate and the cluster deform and lose the crystalline structure. But after reconstruction and relaxation, both of them recover the crystalline structure. By calculating the temperatures of the substrate and the local area influenced by impinging, it is found that the melt phenomenon occurs during impact and deposition, whereas the temperature of the rest region of the substrate is still below the melt point. In addition, the influence factors on deposition, such as incident velocity and the size of the cluster, are discussed in the paper. Simulation results show that the higher incident velocity or the larger size of the cluster could result in stronger interaction between the substrate and the cluster owing to the higher kinetic energy of the cluster.


Nanomaterials ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64 ◽  
Author(s):  
Qin Wang ◽  
Hui Xie ◽  
Zhiming Hu ◽  
Chao Liu

In this study, molecular dynamics simulations were carried out to study the coupling effect of electric field strength and surface wettability on the condensation process of water vapor. Our results show that an electric field can rotate water molecules upward and restrict condensation. Formed clusters are stretched to become columns above the threshold strength of the field, causing the condensation rate to drop quickly. The enhancement of surface attraction force boosts the rearrangement of water molecules adjacent to the surface and exaggerates the threshold value for shape transformation. In addition, the contact area between clusters and the surface increases with increasing amounts of surface attraction force, which raises the condensation efficiency. Thus, the condensation rate of water vapor on a surface under an electric field is determined by competition between intermolecular forces from the electric field and the surface.


Author(s):  
Juanfang Liu ◽  
Chao Liu ◽  
Qin Li

The flow properties and dynamical behavior of fluid in a nanochannel were investigated by nonequilibrium molecular dynamics simulation. First of all, the locale distribution of molecules in the channel is found to be strongly inhomogeneous compared to the bulk fluid. In the vicinity of the wall, portion of the fluid molecules are absorbed on the surface of wall due to the strong interaction of the atoms between the wall and liquid, so that the fluid density in the contact region would be much larger than one of the bulk fluid. But in the other region, the local density value approaches one of the bulk fluids with the increasing distance from the wall. This oscillatory behavior of density resulted in different motion behavior of molecules in the different region of nanochannel. The molecular behavior in the interfacial region is remarkably different from those of fluid atoms in the center of channel and wall atoms, which posses both the motion properties of bulk liquids and a solid atom. At the molecular level, macroscopic continuum hypothesis failed, that is, the results predicted by the Navier-Stoke equations deviate from the simulation data adopted by molecular dynamics simulation. In the paper, the velocity profiles for the channels with different width were plotted, which demonstrated that the time-averaged velocity profiles was not quadratic when the channel width was less than 10 molecular diameters. But on the other cases, the velocity profiles will agree well with the analytical solution based on the NS theory. The molecular dynamics simulation method can withdraw the important microscopical information from the simulation process, which benefit to analyze the flow mechanism at such length scale channel.


2008 ◽  
Vol 373-374 ◽  
pp. 108-112
Author(s):  
Yu Jun Zhang ◽  
Guang Neng Dong ◽  
Jun Hong Mao ◽  
You Bai Xie

The novel frictional properties of hydrogenated DLC (Diamond-like Carbon) films have been reported for nearly ten years. But up to now, researchers still haven’t known the exact mechanism resulting in the super-low frictional performance of hydrogenated DLC films. Especially they have little knowledge on the molecular configuration and structural properties of these kinds of films. In this paper, CH3 radicals with different impact energies are selected as source species to deposit DLC films on diamond (100) by molecular dynamics simulation. Results show hydrogenated DLC films can be successfully obtained when impact energy is in an appropriate scope that is no less than 20eV. The depositing processes involve impinging diamond surface and bonding procedure. Some atoms, instead of bonding with substrate atoms, fly away from the diamond surface. Only suitable impact energy can improve the growth of the film. Within 30eV to 60eV, the maximum deposition ratio is attained. In addition, when carbon atoms act as the deposition sources, the deposition ratio is relatively higher. Furthermore, the authors find that species with higher concentration of carbon atoms in deposition sources lead to a better deposition rate. Carbon atoms are more reactive than hydrogen atoms. Then the relative densities of DLC films are calculated. The density curves indicate that the structures of the films vary obviously as the impact energy augments. The average relative density is generally monotone increase with the increment of impact energy. The hybridization of carbon atoms greatly affects the properties of hydrogenated DLC films. The transition between sp2 and sp3 will result in the graphitization and reduce the frictional coefficient when DLC films are used as tribo-pair in friction.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 453 ◽  
Author(s):  
Masoud Kamoleka Mlela ◽  
He Xu ◽  
Feng Sun ◽  
Haihang Wang ◽  
Gabriel Donald Madenge

In the milestone of straggling to make water hydraulics more advantageous, the choice of coating polymer for water hydraulics valves plays an essential role in alleviating the impact of cavitation erosion and corrosion, and this is a critical task for designers. Fulfilling the appropriate selection, we conflicted properties that are vital for erosion and corrosion inhibitors, as well as the tribology in the sense of coefficient of friction. This article aimed to choose the best alternative polymer for coating on the selected substrate, that is, Cr2O3, Al2O3, Ti2O3. By applying PROMETHEE (Preference Ranking Organization Method for Enrichment Evaluations), the best polymer obtained with an analyzed performance attribute is Polytetrafluoroethylene (PTFE) that comes up with higher outranking (0.5932052). A Molecular Dynamics (MD) simulation was conducted to identify the stronger bonding with the regards of the better cleave plane between Polytetrafluoroethylene (PTFE) and the selected substrate. Polytetrafluoroethylene (PTFE)/Al2O3 cleaved in (010) plane was observed to be the strongest bond in terms of binding energy (3188 kJ/mol) suitable for further studies.


2011 ◽  
Vol 194-196 ◽  
pp. 2220-2224
Author(s):  
Hui Qing Lan ◽  
Zheng Ling Kang

The growth of amorphous carbon films via deposition is investigated using molecular dynamics simulation with a modified Tersoff potential. The impact energy of carbon atoms ranges from 1 to 50 eV and the temperature of the diamond substrate is 300 K. The effects of the incident energy on the growth dynamics and film structure are studied in a detail. Simulation results show that the mobility of surface atoms in the cascade region is enhanced by impacting energetic carbon ions, especially at moderate energy, which favors the growth of denser and smoother films with better adhesion to the substrate. Our results agree qualitatively with the experimental observation.


2020 ◽  
pp. 096739112093524
Author(s):  
Jiafang Xu ◽  
Moussa Camara ◽  
Hualin Liao ◽  
Hong Guo ◽  
Kouassi Louis Kra ◽  
...  

In the present study, we performed a molecular dynamics simulation of the intercalation of poly( N-isopropyl acrylamide) (NIPAM)3 and poly( N-vinyl caprolactam) (NVCL)3 trimers into Na-montmorillonite (Na-Mt) to evaluate their effects on the interlayer structure and the stability of hydrated Na-Mt. The impact of both trimers on the interlayer species and their dynamics properties at different temperatures in a canonical ensemble (NVT) were investigated. The results showed that the electrostatic forces exerted by Na cations on H2O molecules and the interlayer H2O molecular arrangement are not affected by the rise in temperature after adding both trimers. Trimer addition reinforced the structure of interlayer H2O molecules so that the effect of temperature increase on them became negligible. The structural dynamics evolution of the radius of gyration of both trimers showed the existence of conformation changes when temperature increased. These conformational changes are more complex in the case of (NVCL)3 than (NIPAM)3 due to its large monomers. Both trimers reduced the mobility of interlayer particles with a better inhibition effect obtained for (NVCL)3 compared to (NIPAM)3. The concentration profile of interlayers’ species showed the affinity of Na cations for clay mineral surfaces while H2O molecules moved away. Compared these two trimers, the most stable state of Na-Mt is achieved with (NVCL)3. These results could help highlight the inhibition properties of (NIPAM)3 and (NVCL)3 on hydrated Na-Mt and to predict its stability against changes in environmental conditions.


Sign in / Sign up

Export Citation Format

Share Document