scholarly journals Study of the Adhesion of Silicate-Based Coating Formulations on a Wood Substrate

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 61
Author(s):  
Arnaud Maxime Cheumani Yona ◽  
Jure Žigon ◽  
Sebastian Dahle ◽  
Marko Petrič

Silicate coatings are environmentally friendly inorganic-based products that have long been used for mineral substrates and protection of steel against corrosion. The development and acceptance of these coatings in the wood sector require some adjustments in formulations or special preparation of the surface to be coated to obtain durable finishes. In this work, the adhesion of various silicate-based formulations to a beech wood substrate (Fagus sylvatica L.), was assessed with the main objective to study relevant parameters and potential improvements. Adhesion strength was determined by pull-off and cross-cut tests. Other coating properties such as scratch, impact, and water resistance were also determined. Surface roughness and interface were analyzed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM), and coating curing was studied by attenuated total reflection-infrared spectroscopy (ATR FTIR). The results showed that adhesion was highly dependent on formulation, penetration of the coatings into wood, and mechanical anchoring. Increasing the content of solid particles in the coating formulations or adding a polyol (glycerol, xylose), which probably acted as a coalescent, considerably decreased the adhesion strength, probably by blocking penetration into the wood by forming aggregates. Adhesion was improved by pre-mineralization of the surface, and substitution of a part of the potassium silicate binder with potassium methyl siliconate reduced the formation of cracks caused by dimensional instability of the wood.

2018 ◽  
Vol 19 (9) ◽  
pp. 2764 ◽  
Author(s):  
Bor-Shiunn Lee ◽  
Yu-Jia Chen ◽  
Ta-Chin Wei ◽  
Tien-Li Ma ◽  
Che-Chen Chang

Although poly(2-hydroxyethyl methacrylate) (pHEMA) and polyethylene glycol methacrylate (PEGMA) have been demonstrated to inhibit bacterial adhesion, no study has compared antibacterial adhesion when salivary pellicle is coated on polymethyl methacrylate (PMMA) grafted with pHEMA and on PMMA grafted with PEGMA. In this study, PMMA discs were fabricated from a commercial orthodontic acrylic resin system (Ortho-Jet). Attenuated total reflection-Fourier transform infrared spectra taken before and after grafting confirmed that pHEMA and PEGMA were successfully grafted on PMMA. Contact angle measurements revealed PMMA-pHEMA to be the most hydrophilic, followed by PMMA-PEGMA, and then by PMMA. Zeta potential analysis revealed the most negative surface charges on PMMA-PEGMA, followed by PMMA-pHEMA, and then by PMMA. Confocal laser scanning microscopy showed green fluorescence in the background, indicating images that influenced the accuracy of the quantification of live bacteria. Both the optical density value measured at 600 nm and single plate-serial dilution spotting showed that pHEMA was more effective than PEGMA against Escherichia coli and Streptococcus mutans, although the difference was not significant. Therefore, the grafting of pHEMA and PEGMA separately on PMMA is effective against bacterial adhesion, even after the grafted PMMA were coated with salivary pellicle. Surface hydrophilicity, bactericidality, and Coulomb repulsion between the negatively charged bacteria and the grafted surface contributed to the effectiveness.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yixiao Huang ◽  
Quanwei Pei ◽  
Ruisha Deng ◽  
Xiaoying Zheng ◽  
Jialu Guo ◽  
...  

The objectives of this study were to evaluate the inactivation efficacy of a 405-nm light-emitting diode (LED) against Cronobacter sakazakii biofilm formed on stainless steel and to determine the sensitivity change of illuminated biofilm to food industrial disinfectants. The results showed that LED illumination significantly reduced the population of viable biofilm cells, showing reduction of 2.0 log (25°C), 2.5 log (10°C), and 2.0 log (4°C) between the non-illuminated and LED-illuminated groups at 4 h. Images of confocal laser scanning microscopy and scanning electron microscopy revealed the architectural damage to the biofilm caused by LED illumination, which involved destruction of the stereoscopic conformation of the biofilm. Moreover, the loss of biofilm components (mainly polysaccharide and protein) was revealed by attenuated total reflection Fourier-transformed infrared spectroscopy, and the downregulation of genes involved in C. sakazakii biofilm formation was confirmed by real time quantitative PCR analysis, with greatest difference observed in fliD. In addition, the sensitivity of illuminated-biofilm cells to disinfectant treatment was found to significantly increased, showing the greatest sensitivity change with 1.5 log reduction between non-LED and LED treatment biofilms in the CHX-treated group. These results indicated that 405 nm LED illumination was effective at inactivating C. sakazakii biofilm adhering to stainless steel. Therefore, the present study suggests the potential of 405 nm LED technology in controlling C. sakazakii biofilms in food processing and storage, minimizing the risk of contamination.


Les/Wood ◽  
2020 ◽  
Vol 69 (2) ◽  
pp. 21-35
Author(s):  
Angela Balzano ◽  
Katarina Čufar ◽  
Luka Krže ◽  
Maks Merela

Wood identification of barbecue charcoal from commercial packages of three retailers (B1, B2, B3) in Slovenia and Croatia was performed with help of Confocal Laser Scanning Microscopy (CLSM). CLSM enabled us to image key identification features of charcoal wood that were compared with light micrographs of wood from the reference collection. Product B1 contained charcoal made exclusively of beech wood (Fagus sylvatica) and the declaration indicated the address of the producer, in Serbia which allowed traceability of the wood. The selection of wood species in product B2, consisted of red oak (Quercus cerris or Q. rubra), black locust (Robinia pseudoacacia), and cherry (Prunus avium), which could originate from Serbia, and it did not contain tropical wood as stated on the package. Product B3 contained wood from at least four (sub)topical species which could not be exactly identified to species/genus level. The declaration on the product did not allow traceability of wood. As the risks of illegal logging are high for wood of (sub)tropical origin, our results support the initiative that the monitoring of the charcoal trade should be covered by the EUTR - European Timber Regulations.


2013 ◽  
Vol 16 (4) ◽  
pp. 551 ◽  
Author(s):  
Takayuki Furuishi ◽  
Yukiko Kato ◽  
Toshiro Fukami ◽  
Toyofumi Suzuki ◽  
Tomohiro Endo ◽  
...  

Purpose. Lomerizine dihydrochloride (LOM) is a Ca2+ channel blocker used as an antimigraine drug, which is currently administered orally in Japan. We therefore investigated the effect of terpenes in propylene glycol (PG) solvent on the percutaneous absorption of LOM by hairless mouse skin. Methods. Attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR), confocal laser scanning microscopy (CLSM), and small angle X-ray scattering (SAXS) were carried out to analyze the effects of terpene enhancers on the biophysical properties of the stratum corneum (SC) of the skin. Results. Of the terpenes tested, the highest permeation rate of LOM (28.8 mg/cm2/h) was observed with 1,8-cineole, while nerolidol conferred the lowest enhancement of LOM flux (14.2 mg/cm2/h). ATR-FTIR studies revealed that terpenes/PG induced higher CH2 stretching frequencies of SC lipids than PG alone. The extent of penetration of the lipophilic fluorescence probes Nile Red and DiI was measured by CLSM in in vitro skin permeation studies, using either PG or terpenes/PG as skin permeation enhancers. With PG alone, both fluorescence dyes were undetectable in the skin. In contrast, when co-administered with terpenes/PG, both probes were distributed into the intercellular space between corneocytes and detected in the deeper layers of the skin. SAXS measurements showed that in SC treated with a combination of 1,8-cineole and PG, the scattering peak of the SC was broad and very weak in intensity compared to untreated SC, whereas pretreatment with PG alone did not alter the peak profile. Conclusion. A combination of terpenes and PG enhance the skin permeation of LOM. Our findings suggest that the mechanism for this effect involves the ability of terpenes to increase the fluidity of SC lipids, thus enhancing the distribution of LOM into the intercellular region of the SC. This article is open to POST-PUBLICATION REVIEW. Registered readers (see “For Readers”) may comment by clicking on ABSTRACT on the issue’s contents page.


Author(s):  
Thomas M. Jovin ◽  
Michel Robert-Nicoud ◽  
Donna J. Arndt-Jovin ◽  
Thorsten Schormann

Light microscopic techniques for visualizing biomolecules and biochemical processes in situ have become indispensable in studies concerning the structural organization of supramolecular assemblies in cells and of processes during the cell cycle, transformation, differentiation, and development. Confocal laser scanning microscopy offers a number of advantages for the in situ localization and quantitation of fluorescence labeled targets and probes: (i) rejection of interfering signals emanating from out-of-focus and adjacent structures, allowing the “optical sectioning” of the specimen and 3-D reconstruction without time consuming deconvolution; (ii) increased spatial resolution; (iii) electronic control of contrast and magnification; (iv) simultanous imaging of the specimen by optical phenomena based on incident, scattered, emitted, and transmitted light; and (v) simultanous use of different fluorescent probes and types of detectors.We currently use a confocal laser scanning microscope CLSM (Zeiss, Oberkochen) equipped with 3-laser excitation (u.v - visible) and confocal optics in the fluorescence mode, as well as a computer-controlled X-Y-Z scanning stage with 0.1 μ resolution.


Author(s):  
M. H. Chestnut ◽  
C. E. Catrenich

Helicobacter pylori is a non-invasive, Gram-negative spiral bacterium first identified in 1983, and subsequently implicated in the pathogenesis of gastroduodenal disease including gastritis and peptic ulcer disease. Cytotoxic activity, manifested by intracytoplasmic vacuolation of mammalian cells in vitro, was identified in 55% of H. pylori strains examined. The vacuoles increase in number and size during extended incubation, resulting in vacuolar and cellular degeneration after 24 h to 48 h. Vacuolation of gastric epithelial cells is also observed in vivo during infection by H. pylori. A high molecular weight, heat labile protein is believed to be responsible for vacuolation and to significantly contribute to the development of gastroduodenal disease in humans. The mechanism by which the cytotoxin exerts its effect is unknown, as is the intracellular origin of the vacuolar membrane and contents. Acridine orange is a membrane-permeant weak base that initially accumulates in low-pH compartments. We have used acridine orange accumulation in conjunction with confocal laser scanning microscopy of toxin-treated cells to begin probing the nature and origin of these vacuoles.


TAPPI Journal ◽  
2010 ◽  
Vol 9 (10) ◽  
pp. 7-15
Author(s):  
HANNA KOIVULA ◽  
DOUGLAS BOUSFIELD ◽  
MARTTI TOIVAKKA

In the offset printing process, ink film splitting has an important impact on formation of ink filaments. The filament size and its distribution influence the leveling of ink and hence affect ink setting and the print quality. However, ink filaments are difficult to image due to their short lifetime and fine length scale. Due to this difficulty, limited work has been reported on the parameters that influence filament size and methods to characterize it. We imaged ink filament remains and quantified some of their characteristics by changing printing speed, ink amount, and fountain solution type. Printed samples were prepared using a laboratory printability tester with varying ink levels and operating settings. Rhodamine B dye was incorporated into fountain solutions to aid in the detection of the filaments. The prints were then imaged with a confocal laser scanning microscope (CLSM) and images were further analyzed for their surface topography. Modeling of the pressure pulses in the printing nip was included to better understand the mechanism of filament formation and the origin of filament length scale. Printing speed and ink amount changed the size distribution of the observed filament remains. There was no significant difference between fountain solutions with or without isopropyl alcohol on the observed patterns of the filament remains.


2012 ◽  
Vol 11 (3) ◽  
pp. 669-674 ◽  
Author(s):  
Szabolcs Szilveszter ◽  
Botond Raduly ◽  
Szilard Bucs ◽  
Beata Abraham ◽  
Szabolcs Lanyi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document