scholarly journals Structural and Electric Properties of Epitaxial Na0.5Bi0.5TiO3-Based Thin Films

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 651
Author(s):  
Bruno Magalhaes ◽  
Stefan Engelhardt ◽  
Christian Molin ◽  
Sylvia E. Gebhardt ◽  
Kornelius Nielsch ◽  
...  

Substantial efforts are dedicated worldwide to use lead-free materials for environmentally friendly processes in electrocaloric cooling. Whereas investigations on bulk materials showed that Na0.5Bi0.5TiO3 (NBT)-based compounds might be suitable for such applications, our aim is to clarify the feasibility of epitaxial NBT-based thin films for more detailed investigations on the correlation between the composition, microstructure, and functional properties. Therefore, NBT-based thin films were grown by pulsed laser deposition on different single crystalline substrates using a thin epitaxial La0.5Sr0.5CoO3 layer as the bottom electrode for subsequent electric measurements. Structural characterization revealed an undisturbed epitaxial growth of NBT on lattice-matching substrates with a columnar microstructure, but high roughness and increasing grain size with larger film thickness. Dielectric measurements indicate a shift of the phase transition to lower temperatures compared to bulk samples as well as a reduced permittivity and increased losses at higher temperatures. Whereas polarization loops taken at −100 °C revealed a distinct ferroelectric behavior, room temperature data showed a significant resistive contribution in these measurements. Leakage current studies confirmed a non-negligible conductivity between the electrodes, thus preventing an indirect characterization of the electrocaloric properties of these films.

2010 ◽  
Vol 75 ◽  
pp. 202-207
Author(s):  
Victor Ríos ◽  
Elvia Díaz-Valdés ◽  
Jorge Ricardo Aguilar ◽  
T.G. Kryshtab ◽  
Ciro Falcony

Bi-Pb-Sr-Ca-Cu-O (BPSCCO) and Bi-Pb-Sb-Sr-Ca-Cu-O (BPSSCCO) thin films were grown on MgO single crystal substrates by pulsed laser deposition. The deposition was carried out at room temperature during 90 minutes. A Nd:YAG excimer laser ( = 355 nm) with a 2 J/pulse energy density operated at 30 Hz was used. The distance between the target and substrate was kept constant at 4,5 cm. Nominal composition of the targets was Bi1,6Pb0,4Sr2Ca2Cu3O and Bi1,6Pb0,4Sb0,1Sr2Ca2Cu3OSuperconducting targets were prepared following a state solid reaction. As-grown films were annealed at different conditions. As-grown and annealed films were characterized by XRD, FTIR, and SEM. The films were prepared applying an experimental design. The relationship among deposition parameters and their effect on the formation of superconducting Bi-system crystalline phases was studied.


2008 ◽  
Vol 202 (22-23) ◽  
pp. 5467-5470 ◽  
Author(s):  
Norihiro Sakai ◽  
Yoshihiro Umeda ◽  
Fumiaki Mitsugi ◽  
Tomoaki Ikegami

Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6929
Author(s):  
Giovanna Latronico ◽  
Saurabh Singh ◽  
Paolo Mele ◽  
Abdalla Darwish ◽  
Sergey Sarkisov ◽  
...  

The effect of SnO2 addition (0, 1, 2, 4 wt.%) on thermoelectric properties of c-axis oriented Al-doped ZnO thin films (AZO) fabricated by pulsed laser deposition on silica and Al2O3 substrates was investigated. The best thermoelectric performance was obtained on the AZO + 2% SnO2 thin film grown on silica, with a power factor (PF) of 211.8 μW/m·K2 at 573 K and a room-temperature (300 K) thermal conductivity of 8.56 W/m·K. PF was of the same order of magnitude as the value reported for typical AZO bulk material at the same measurement conditions (340 μW/m·K2) while thermal conductivity κ was reduced about four times.


Author(s):  
J.B. Posthill ◽  
R.P. Burns ◽  
R.A. Rudder ◽  
Y.H. Lee ◽  
R.J. Markunas ◽  
...  

Because of diamond’s wide band gap, high thermal conductivity, high breakdown voltage and high radiation resistance, there is a growing interest in developing diamond-based devices for several new and demanding electronic applications. In developing this technology, there are several new challenges to be overcome. Much of our effort has been directed at developing a diamond deposition process that will permit controlled, epitaxial growth. Also, because of cost and size considerations, it is mandatory that a non-native substrate be developed for heteroepitaxial nucleation and growth of diamond thin films. To this end, we are currently investigating the use of Ni single crystals on which different types of epitaxial metals are grown by molecular beam epitaxy (MBE) for lattice matching to diamond as well as surface chemistry modification. This contribution reports briefly on our microscopic observations that are integral to these endeavors.


2021 ◽  
Vol 127 ◽  
pp. 105716
Author(s):  
Tianzhen Guo ◽  
Dan Wang ◽  
Yajun Yang ◽  
Xiaoyong Xiong ◽  
Kelin Li ◽  
...  

2004 ◽  
Vol 36 (4-6) ◽  
pp. 403-408 ◽  
Author(s):  
D. O’Mahony ◽  
F. McGee ◽  
M. Venkatesan ◽  
J.G. Lunney ◽  
J.M.D. Coey

2001 ◽  
Vol 703 ◽  
Author(s):  
Huiping Xu ◽  
Adam T. Wise ◽  
Timothy J. Klemmer ◽  
Jörg M. K. Wiezorek

ABSTRACTA combination of XRD and TEM techniques have been used to characterize the response of room temperature magnetron sputtered Fe-Pd thin films on Si-susbtrates to post-deposition order-annealing at temperatures between 400-500°C. Deposition produced the disordered Fe-Pd phase with (111)-twinned grains approximately 18nm in size. Ordering occurred for annealing at 450°C and 500°C after 1.8ks, accompanied by grain growth (40-70nm). The ordered FePd grains contained (111)-twins rather than {101}-twins typical of bulk ordered FePd. The metallic overlayers and underlayers selected here produced detrimental dissolution (Pt into Fe-Pd phases) and precipitation reactions between Pd and the Si substrate.


Sign in / Sign up

Export Citation Format

Share Document