scholarly journals The Combined Influences of Hot Streak and Swirl on the Cooling Performances of C3X Guide Vane with or without TBCs

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 688
Author(s):  
Li Shi ◽  
Hanze Huang ◽  
Yuanfeng Lu ◽  
Shunsheng Xu ◽  
Chen Ge

This paper studied the combined influences of the hot streak and swirl on the cooling performances of the NASA C3X guide vane coated with or without thermal barrier coatings (TBCs). The results show that: (1) Even under uniform velocity inlet conditions, the hot streak core can be stretched as it impinges the leading edge which causes higher heat load on the suction side of the forward portion. (2) The swirl significantly affects circumferential and radial migration of the hot streak core in the NGV passage. On the passage inlet plane, positive swirl leads to a hotter tip region on the suction side. In comparison, negative swirl leads to a hotter hub region on the pressure side. (3) Under the influence of swirl, migration of coolant improves the coverage of film cooling close to the midspan, while in the regions close to the hub and tip end-wall, the overall cooling performance decreases simultaneously. (4) In the regions with enough internal cooling, the cooling effectiveness increment is always larger than that in other regions. Besides, the overall cooling effectiveness increment decreases on the region covered by film cooling for the coated vane, especially in the region with negative local heat flux.

Author(s):  
Li Shi ◽  
Hanze Huang ◽  
Yuanfeng Lu ◽  
Shunsheng Xu ◽  
Chen Ge

This paper studied the combined influences of the hot streak and swirl on the cooling performances of the NASA C3X guide vane coated with or without TBCs. The results show that: (1) Even under uniform velocity inlet conditions, the hot streak core can be stretched as it impinges the leading edge which causes higher heat load on the suction side of the forward portion. (2) The swirl significantly affects circumferential and radial migration of the hot streak core in the NGV passage. On the passage inlet plane, positive swirl leads to a hotter tip region on the suction side. In comparison, negative swirl leads to a hotter hub region on the pressure side. (3) Under the influence of swirl, migration of coolant improve the coverage of film cooling close to the midspan, while in the regions close to the hub and tip end-wall, the overall cooling performance decrease simultaneously. (4) In the regions with enough internal cooling, the cooling effectiveness increment is always larger than that in other regions. Besides, the overall cooling effectiveness increment decreases on the region covered by film cooling for the coated vane, especially in the region with negative local heat flux.


Author(s):  
Wei He ◽  
Qinghua Deng ◽  
Juan He ◽  
Tieyu Gao ◽  
Zhenping Feng

Abstract A novel internal cooling structure has been raised recently to enhance internal cooling effectiveness and reduce coolant requirement without using film cooling. This study mainly focuses on verifying the actual cooling performance of the structure and investigating the heat transfer mechanism of the leading edge part of the structure, named bended channel cooling. The cooling performances of the first stage of GE-E3 turbine with three different blade leading edge cooling structures (impingement cooling, swirl cooling and bended channel cooling) were simulated using the conjugate heat transfer method. Furthermore, the effects of jetting orifice geometry and channel Reynolds number were studied with simplified models to illustrate the flow and heat transfer characteristics of the bended channel cooling. The results show that the novel internal cooling structure has obvious advantages on the blade leading edge and suction side under operating condition. The vortex core structure in the bended channel depends on orifice width, but not channel Reynolds number. With the ratio of orifice width to outer wall thickness smaller than a critical value of 0.5, the coolant flows along the external surface of the channel in the pattern of “inner film cooling”, which is pushed by centrifugal force and minimizes the mixing with spent cooling air. Namely, the greatly organized coolant flow generates higher cooling effectiveness and lower coolant demand. Both the Nusselt number on the channel surfaces and total pressure loss increase significantly when the orifice width falls or channel Reynolds increases, but the wall jet impingement distance appears to be less influential.


Author(s):  
Zhuang Wu ◽  
Hui Ren Zhu ◽  
Cun Liang Liu ◽  
Lin Li ◽  
Ming Rui Wang

Abstract To investigate the superposition effect of the leading edge film on the downstream film cooling under swirling inflow, numerical simulations with three vane models (vane with films on the leading edge only, vane with films on the pressure side and suction side only, full-film cooling vane), two inlet conditions (axial inlet and swirling inlet) are conducted. The results indicate that the leading edge is the area where the film is most affected by the swirling inflow. For full-film cooling vane, the film on the leading edge does not always improve or even reduce the downstream film cooling. Flow mechanism analysis shows that the velocity direction near the downstream wall is governed by the interaction between the direction of swirling inflow and the direction of film hole incidence on the leading edge. A new type of leading edge film proposed by the author is also investigated, with the dividing line of the counter-inclined film-hole row coinciding with the twisted stagnant line to ensure that all films are incident at angles inverse to the direction of the swirling inflow. The new leading edge film successfully changes the velocity direction near the downstream wall and suppresses the deflecting effect on the downstream film. The new leading edge film can increase the overall area averaged cooling effectiveness of the full-film cooling vane by 10%, 15%, 18% and reduce the inhomogeneity by 13%, 19%, 27% over the traditional design, as the coolant mass flow increases.


2017 ◽  
Vol 872 ◽  
pp. 271-278
Author(s):  
Prasert Prapamonthon ◽  
Hua Zhao Xu ◽  
Jian Hua Wang

This study presents a numerical investigation of cooling performances of a modified vane of the film-cooled vane reported by Timko (NASA CR-168289) at different mainstream turbulence intensities (Tus). A 3D conjugate heat transfer (CHT) analysis with SST k-ω turbulence model in FLUENT V.15 is used. Three different mechanisms in CHT analysis, i.e. fluid flow, heat convection between solid surfaces and flowing fluid in an external mainstream and internal cooling passages, and heat conduction within the vane structure, are simultaneously considered. Numerical results are conducted in terms of overall cooling effectiveness at Tu=3.3, 10, and 20%. Comparison between overall cooling effectiveness and film effectiveness under adiabatic assumption is discussed at the three Tus, also. The findings of this research indicate the following phenomena: 1) overall cooling effectiveness decreases with Tu, and this effect on the pressure side (PS) is stronger than that on the suction side (SS) in general. 2) By comparison with adiabatic film effectiveness, the level of overall cooling effectiveness in most regions is higher and more uniform than that of adiabatic film effectiveness for all three Tus. 3) In the leading edge (LE), when Tu increases, near the exits of film holes overall cooling effectiveness deteriorates, but adiabatic film effectiveness improves. Furthermore, a large area with relatively low overall cooling effectiveness is able to move with Tu in the LE region.


Author(s):  
S. Ravelli ◽  
G. Barigozzi

The performance of a showerhead arrangement of film cooling in the leading edge region of a first stage nozzle guide vane was experimentally and numerically evaluated. A six-vane linear cascade was tested at an isentropic exit Mach number of Ma2s = 0.42, with a high inlet turbulence intensity level of 9%. The showerhead cooling scheme consists of four staggered rows of cylindrical holes evenly distributed around the stagnation line, angled at 45° towards the tip. The blowing ratios tested are BR = 2.0, 3.0 and 4.0. Adiabatic film cooling effectiveness distributions on the vane surface around the leading edge region were measured by means of Thermochromic Liquid Crystals technique. Since the experimental contours of adiabatic effectiveness showed that there is no periodicity across the span, the CFD calculations were conducted by simulating the whole vane. Within the RANS framework, the very widely used Realizable k-ε (Rke) and the Shear Stress Transport k-ω (SST) turbulence models were chosen for simulating the effect of the BR on the surface distribution of adiabatic effectiveness. The turbulence model which provided the most accurate steady prediction, i.e. Rke, was selected for running Detached Eddy Simulation at the intermediate value of BR = 3. Fluctuations of the local temperature were computed by DES, due to the vortex structures within the shear layers between the main flow and the coolant jets. Moreover, mixing was enhanced both in the wall-normal and spanwise direction, compared to RANS modeling. DES roughly halved the prediction error of laterally averaged film cooling effectiveness on the suction side of the leading edge. However, neither DES nor RANS provided the expected decay of effectiveness progressing downstream along the pressure side, with 15% overestimation of ηav at s/C =0.2.


Author(s):  
Andrew F. Chen ◽  
Chao-Cheng Shiau ◽  
Je-Chin Han

The combined effects of inlet purge flow and the slashface leakage flow on the film cooling effectiveness of a turbine blade platform were studied using the pressure sensitive paint (PSP) technique. Detailed film cooling effectiveness distributions on the endwall were obtained and analyzed. The inlet purge flow was generated by a row of equally-spaced cylindrical injection holes inside a single-tooth generic stator-rotor seal. In addition to the traditional 90 degree (radial outward) injection for the inlet purge flow, injection at a 45 degree angle was adopted to create a circumferential/azimuthal velocity component toward the suction side of the blades, which created a swirl ratio (SR) of 0.6. Discrete cylindrical film cooling holes were arranged to achieve an improved coverage on the endwall. Backward injection was attempted by placing backward injection holes near the pressure side leading edge portion. Slashface leakage flow was simulated by equally-spaced cylindrical injection holes inside a slot. Experiments were done in a five-blade linear cascade with an average turbulence intensity of 10.5%. The inlet and exit Mach numbers were 0.26 and 0.43, respectively. The inlet and exit mainstream Reynolds numbers based on the axial chord length of the blade were 475,000 and 720,000, respectively. The coolant-to-mainstream mass flow ratios (MFR) were varied from 0.5%, 0.75%, to 1% for the inlet purge flow. For the endwall film cooling holes and slashface leakage flow, blowing ratios (M) of 0.5, 1.0, and 1.5 were examined. Coolant-to-mainstream density ratios (DR) that range from 1.0 (close to low temperature experiments) to 1.5 (intermediate DR) and 2.0 (close to engine conditions) were also examined. The results provide the gas turbine engine designers a better insight into improved film cooling hole configurations as well as various parametric effects on endwall film cooling when the inlet (swirl) purge flow and slashface leakage flow were incorporated.


Author(s):  
Yang Zhang ◽  
Xin Yuan

The paper is focused on the effect of leading edge airfoil geometry on endwall film cooling. Fillets placed at the junctions of the leading edge and the endwall are used in investigation. Three types of fillet profiles are tested, and the results are compared with baseline geometry without fillet. The design of the fillet is based on the suggestion by previous literature data indicating that sharp is effective in controlling the secondary flow. Three types of sharp slope fillet with the length to height ratio of 2.8, 1.2 and 0.5 are made using stereo lithography (SLA) and assessed in the experiment. Distributed with the approximately inviscid flow direction, four rows of compound angle laidback fan-shaped holes are arranged on the endwall to form full covered coolant film. The four rows of fanshaped holes are inclined 30 deg to the endwall surface and held an angle of 0, 30, 45 and 60 deg to axial direction respectively. The fanshaped holes have a lateral diffusion angle of 10 deg from the hole-centerline and a forward expansion angle of 10 deg to the endwall surface. The Reynolds number based on the axial chord and inlet velocity of the free-stream flow is 3.5*105, and the testing is done in a four-blade cascade with low Mach number condition (0.1 at the inlet) while the blowing ratio of the coolant through the discrete holes varies from 0.4 to 1.2. The film-cooling effectiveness distributions are obtained using the PSP (pressure sensitive paint) technique, by which the effect of different fillet geometry on passage induced flow and coolant is shown. The present paper compares the film cooling effectiveness distributions in a baseline blade cascade with three similar blades with different leading edge by adding fillets. The results show that with blowing ratio increasing, the film cooling effectiveness increases on the endwall. For specific blowing ratio, the effects of leading edge geometries could be illustrated as follows. The baseline geometry provides the best film cooling performance near leading edge pressure side. As for the leading edge suction side, the best leading edge geometry depends on the blowing ratio. The longfillet is the more effective in controlling horseshoe vortex at low blowing ratio, but for the high blowing ratio shortfillet and mediumfillet are better.


Author(s):  
Akhilesh P. Rallabandi ◽  
Shiou-Jiuan Li ◽  
Je-Chin Han

The effect of an unsteady stator wake (simulated by wake rods mounted on a spoke wheel wake generator) on the modeled rotor blade is studied using the Pressure Sensitive Paint (PSP) mass transfer analogy method. Emphasis of the current study is on the mid-span region of the blade. The flow is in the low Mach number (incompressible) regime. The suction (convex) side has simple angled cylindrical film-cooling holes; the pressure (concave) side has compound angled cylindrical film cooling holes. The blade also has radial shower-head leading edge film cooling holes. Strouhal numbers studied range from 0 to 0.36; the exit Reynolds Number based on the axial chord is 530,000. Blowing ratios range from 0.5 to 2.0 on the suction side; 0.5 to 4.0 on the pressure side. Density ratios studied range from 1.0 to 2.5, to simulate actual engine conditions. The convex suction surface experiences film-cooling jet lift-off at higher blowing ratios, resulting in low effectiveness values. The film coolant is found to reattach downstream on the concave pressure surface, increasing effectiveness at higher blowing ratios. Results show deterioration in film cooling effectiveness due to increased local turbulence caused by the unsteady wake, especially on the suction side. Results also show a monotonic increase in film-cooling effectiveness on increasing the coolant to mainstream density ratio.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Reinaldo A. Gomes ◽  
Reinhard Niehuis

Film cooling experiments were run at the high speed cascade wind tunnel of the University of the Federal Armed Forces Munich. The investigations were carried out with a linear cascade of highly loaded turbine blades. The main objectives of the tests were to assess the film cooling effectiveness and the heat transfer in zones with main flow separation. Therefore, the blades were designed to force the flow to detach on the pressure side shortly downstream of the leading edge and reattach at about half of the axial chord. In this zone, film cooling rows are placed among others for a reduction of the size of the separation bubble. The analyzed region on the blade is critical due to the high heat transfer present at the leading edge and at the reattachment line after the main flow separation. Film cooling can contribute to a reduction of the size of the separation bubble reducing aerodynamic losses, however, in general, it increases heat transfer due to turbulent mixing. The reduction of the size of the separation bubble might also be twofold, since it acts like a thermal insulator on the blade and reducing the size of the bubble might lead to a stronger heating of the blade. Film cooling should, therefore, take both into account: first, a proper protection of the surface and second, reducing aerodynamic losses, diminishing the extension of the main flow separation. While experimental results of the adiabatic film cooling effectiveness were shown in previous publications, the local heat transfer is analyzed in this paper. Emphasis is also placed upon analyzing, in detail, the flow separation process. Furthermore, the tests comprise the analysis of the effect of different outlet Mach and Reynolds numbers and film cooling. In part two of this paper, the overall film cooling effectiveness is addressed. Local heat transfer is still difficult to predict with modern numerical tools and this is especially true for complex flows with flow separation. Some numerical results with the Reynolds averaged Navier-Stokes (RANS) and large eddy simulation (LES) show the capability of a commercial solver in predicting the heat transfer.


Author(s):  
Franz Puetz ◽  
Johannes Kneer ◽  
Achmed Schulz ◽  
Hans-Joerg Bauer

An increased demand for lower emission of stationary gas turbines as well as civil aircraft engines has led to new, low emission combustor designs with less liner cooling and a flattened temperature profile at the outlet. As a consequence, the heat load on the endwall of the first nozzle guide vane is increased. The secondary flow field dominates the endwall heat transfer, which also contributes to aerodynamic losses. A promising approach to reduce these losses is non-axisymmetric endwall contouring. The effects of non-axisymmetric endwall contouring on heat transfer and film cooling are yet to be investigated. Therefore, a new cascade test rig has been set up in order to investigate endwall heat transfer and film cooling on both a flat and a non-axisymmetric contoured endwall. Aerodynamic measurements that have been made prior to the upcoming heat transfer investigation are shown. Periodicity and detailed vane Mach number distributions ranging from 0 to 50% span together with the static pressure distribution on the endwall give detailed information about the aerodynamic behavior and influence of the endwall contouring. The aerodynamic study is backed by an oil paint study, which reveals qualitative information on the effect of the contouring on the endwall flow field. Results show that the contouring has a pronounced effect on vane and endwall pressure distribution and on the endwall flow field. The local increase and decrease of velocity and the reduced blade loading towards the endwall is the expected behavior of the 3d contouring. So are the results of the oil paint visualization, which show a strong change of flow field in the leading edge region as well as that the contouring delays the horse shoe vortex hitting the suction side.


Sign in / Sign up

Export Citation Format

Share Document