scholarly journals Self-Assembled PHMB Titanium Coating Enables Anti-Fusobacterium nucleatum Strategy

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1190
Author(s):  
Jiangyuan Zhao ◽  
Shixin Jin ◽  
António HS Delgado ◽  
Zhuofan Chen ◽  
Jukka Pekka Matinlinna ◽  
...  

Fusobacterium nucleatum (F. nucleatum) is a gram-negative obligate anaerobe bacterium that threatens human periodontal health. It can cause many oral diseases, including periodontitis, gingivitis and peri-implantitis, and even some diseases such as colorectal cancer are related to it. This paper aims to develop a novel and simple surface modification method for anti-Fusobacterium nucleatum on titanium, i.e., the material for implants. In this study, different concentrations (0.0–1.0%) of PHMB were dip-coated on the titanium surface. The surface properties were examined with the aid of Scanning electron microscopy, Energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and the antibacterial property against F. nucleatum was investigated using colony-forming unit. It was found that the PHMB successfully formed a self-assembled coating on the titanium surface and the PHMB-coated titanium had a strong capability of inhibiting F. nucleatum. Even though differences were found among the several concentrations, PHMB exhibited promising results as a simple coating strategy for dental implants.

2009 ◽  
Vol 13 (01) ◽  
pp. 35-40 ◽  
Author(s):  
Rudy Martin ◽  
Roberto Cao ◽  
Ana M. Esteva ◽  
Franz-Peter Montforts

A new ruthenium(II) porphyrin disulphide derivative, [ Ru ( Pds )( CO )], was obtained from ruthenium(II)(carbonyl)deuteroporphyrin(IX), [ Ru ( DPdc )( CO )] and cystamine. The interaction of this complex with nitric oxide was studied spectrophotometrically and a bathochromic shift of the charge transfer band and considerable change in the α and β bands of the complex were observed. According to the IR spectrum, the product of this interaction is [ Ru ( DmDP )( NO +)( NO 2-)]. [ Ru ( Pds )( CO )] was then self-assembled on polycrystalline gold and characterized by X-ray photoelectron spectroscopy. [ Ru ( Pds )( CO )] was also self-assembled on gold electrode beads and its interaction with nitric oxide in aqueous solution was studied by cyclic voltammetry. A shift in the ruthenium redox process and a new irreversible cathodic peak at -0.59 V were observed, both indicating coordination of NO .


2012 ◽  
Vol 3 ◽  
pp. 12-24 ◽  
Author(s):  
Hicham Hamoudi ◽  
Ping Kao ◽  
Alexei Nefedov ◽  
David L Allara ◽  
Michael Zharnikov

Self-assembled monolayers (SAMs) of nitrile-substituted oligo(phenylene ethynylene) thiols (NC-OPEn) with a variable chain length n (n ranging from one to three structural units) on Au(111) were studied by synchrotron-based high-resolution X-ray photoelectron spectroscopy and near-edge absorption fine-structure spectroscopy. The experimental data suggest that the NC-OPEn molecules form well-defined SAMs on Au(111), with all the molecules bound to the substrate through the gold–thiolate anchor and the nitrile tail groups located at the SAM–ambient interface. The packing density in these SAMs was found to be close to that of alkanethiolate monolayers on Au(111), independent of the chain length. Similar behavior was found for the molecular inclination, with an average tilt angle of ~33–36° for all the target systems. In contrast, the average twist of the OPEn backbone (planar conformation) was found to depend on the molecular length, being close to 45° for the films comprising the short OPE chains and ~53.5° for the long chains. Analysis of the data suggests that the attachment of the nitrile moiety, which served as a spectroscopic marker group, to the OPEn backbone did not significantly affect the molecular orientation in the SAMs.


2011 ◽  
Vol 1301 ◽  
Author(s):  
Rahul Chhabra ◽  
Hicham Fenniri

ABSTRACTElectroless synthesis and hierarchical organization of 1.4 nm Pd and Pt nanoparticles (NPs) on self-assembled Rosette Nanotubes (RNTs) is described. The nucleated NPs are nearly monodisperse and reveal supramolecular organizations guided by RNT templates. Interestingly, the narrow size distribution is attributable to unique templating behavior of RNTs. The resulting metal NP-RNT composites were characterized by Atomic Force Microscopy (AFM), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). X-ray Photoelectron Spectroscopy (XPS) was also performed to confirm the nature and composition of RNT-templated NPs.


1997 ◽  
Vol 04 (06) ◽  
pp. 1309-1314 ◽  
Author(s):  
D. P. FRICKEL ◽  
M. V. KUZNETSOV ◽  
E. V. SHALAEVA

X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) were used to examine the kinetics of nitrogen adsorption on the Ti(0001) surface at temperatures from 220 to 570 K and adsorption exposures from 0 to 1000 L. At the adsorption temperature T=300 K two chemically nonequivalent states of nitrogen were found: NI (1×1 lattice) localized in octapores between the first and second titanium monolayers and NII (presumably [Formula: see text] structure) on the titanium surface. The third nitrogen state, N0 , which is also localized on the surface but has unoccupied octapores in the nearest neighborhood, is observed with a decrease in the adsorption temperature to 220 K. A model of nitrogen interaction with the Ti(0001) surface in vacuum was proposed proceeding from the temperature dependence of the kinetic adsorption curves.


Sign in / Sign up

Export Citation Format

Share Document