XPS AND XPD ANALYSIS OF NITROGEN ADSORPTION ON THE Ti(0001) SURFACE

1997 ◽  
Vol 04 (06) ◽  
pp. 1309-1314 ◽  
Author(s):  
D. P. FRICKEL ◽  
M. V. KUZNETSOV ◽  
E. V. SHALAEVA

X-ray photoelectron spectroscopy (XPS) and X-ray photoelectron diffraction (XPD) were used to examine the kinetics of nitrogen adsorption on the Ti(0001) surface at temperatures from 220 to 570 K and adsorption exposures from 0 to 1000 L. At the adsorption temperature T=300 K two chemically nonequivalent states of nitrogen were found: NI (1×1 lattice) localized in octapores between the first and second titanium monolayers and NII (presumably [Formula: see text] structure) on the titanium surface. The third nitrogen state, N0 , which is also localized on the surface but has unoccupied octapores in the nearest neighborhood, is observed with a decrease in the adsorption temperature to 220 K. A model of nitrogen interaction with the Ti(0001) surface in vacuum was proposed proceeding from the temperature dependence of the kinetic adsorption curves.

Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1519
Author(s):  
Jong Gyeong Kim ◽  
Sunghoon Han ◽  
Chanho Pak

The price and scarcity of platinum has driven up the demand for non-precious metal catalysts such as Fe-N-C. In this study, the effects of phosphoric acid (PA) activation and phosphorus doping were investigated using Fe-N-C catalysts prepared using SBA-15 as a sacrificial template. The physical and structural changes caused by the addition of PA were analyzed by nitrogen adsorption/desorption and X-ray diffraction. Analysis of the electronic states of Fe, N, and P were conducted by X-ray photoelectron spectroscopy. The amount and size of micropores varied depending on the PA content, with changes in pore structure observed using 0.066 g of PA. The electronic states of Fe and N did not change significantly after treatment with PA, and P was mainly found in states bonded to oxygen or carbon. When 0.135 g of PA was introduced per 1 g of silica, a catalytic activity which was increased slightly by 10 mV at −3 mA/cm2 was observed. A change in Fe-N-C stability was also observed through the introduction of PA.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
N. Cruz-González ◽  
O. Calzadilla ◽  
J. Roque ◽  
F. Chalé-Lara ◽  
J. K. Olarte ◽  
...  

In the last decade, the urgent need to environmental protection has promoted the development of new materials with potential applications to remediate air and polluted water. In this work, the effect of the TiO2 thin layer over MoS2 material in photocatalytic activity is reported. We prepared different heterostructures, using a combination of electrospinning, solvothermal, and spin-coating techniques. The properties of the samples were analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, UV-Vis diffuse reflectance spectroscopy (UV-Vis-DRS), and X-ray photoelectron spectroscopy (XPS). The adsorption and photocatalytic activity were evaluated by discoloration of rhodamine B solution. The TiO2-MoS2/TiO2 heterostructure presented three optical absorption edges at 1.3 eV, 2.28 eV, and 3.23 eV. The high adsorption capacity of MoS2 was eliminated with the addition of TiO2 thin film. The samples show high photocatalytic activity in the visible-IR light spectrum.


2010 ◽  
Vol 75 ◽  
pp. 36-42 ◽  
Author(s):  
Marina Rumyantseva ◽  
Irina Zhurbina ◽  
Elena Varechkina ◽  
Siranuysh Badalyan ◽  
Alexander Gaskov ◽  
...  

Powders of tin dioxide (SnO2) have been prepared by two different modifications of wet chemical synthesis, i.e. (i) by conventional hydrolysis of tin chloride dissolved in aqueous ammonia solution and (ii) by precipitation from tin chloride dissolved in aqueous hydrazine monohydrate (N2H4*H2O) solution. The prepared gels were dried and then annealed at different temperatures varied from 300 to 700 oC in order to form nanocrystals. Structure and optical properties of the samples were investigated by using X-ray diffraction, transmission electron microscopy, thermoprogrammable hydrogen reduction, low temperature nitrogen adsorption method, photoluminescence, infra-red absorption, Raman spectroscopy, and X-ray photoelectron spectroscopy. The samples prepared by hydrazine-based method are characterized by surface area about 127-188 m2/g with high sintering resistance. The optical spectroscopy data revealed pure crystallinity and high defect concentration for the samples prepared by hydrazine-based method. The experimental results are discussed in view of different states of chemisorbed oxygen on SnO2 nanocrystal surfaces, which determine electronic and optical properties of the prepared samples.


1999 ◽  
Vol 06 (06) ◽  
pp. 1053-1060 ◽  
Author(s):  
N. TABET ◽  
J. AL-SADAH ◽  
M. SALIM

X-ray Photoelectron Spectroscopy (XPS) has been used to investigate the oxidation of (011) Ge substrates. The sample surfaces were CP4-etched, then annealed in situ, at different temperatures, for various durations. Dry and wet atmospheres were used. The oxidation rate during the early stage was increased by the presence of moisture in the atmosphere. A simple model was used to define and determine an apparent thickness of the oxide film from XPS measurements. The time dependence of the apparent thickness is consistent with a partial coverage of the surface by oxide islands. The growth kinetics of the oxide islands obeys a nearly cubic law.


2020 ◽  
Vol 81 (10) ◽  
pp. 2270-2280
Author(s):  
Yonggang Xu ◽  
Tianxia Bai ◽  
Yubo Yan ◽  
Yunfeng Zhao ◽  
Ling Yuan ◽  
...  

Abstract It is of great significance to remove Cr(VI) from water as a result of its high toxicity. Biochar from corn straw was modified by different acids (HNO3, H2SO4 and H3PO4) to remove Cr(VI) from aqueous solution. To estimate the removal mechanisms of Cr(VI) by the acid-modified biochars, batch experiments were performed in the light of contact time, Cr(VI) concentration, and pH, and the characteristics of acid-modified biochars before and after Cr(VI) adsorption were investigated by Fourier transform infrared spectra (FTIR) and X-ray photoelectron spectroscopy (XPS). The adsorption kinetics of Cr(VI) by acid-modified biochars were consistent with the pseudo-second-order model, and the adsorption isotherm obeyed the Freundlich model. Furthermore, the acid- modified biochars could supply more oxygen-containing functional groups (-COOH and -OH) as electron donor (e−) and hydrogen ion (H+) to enhance the reduction of Cr(VI) to Cr(III), resulting in enhanced removal of Cr(VI). HNO3-modified biochar exhibited the highest removal efficiency of Cr(VI). In general, the acid modifition of biochar was an effective method to increase the removal of Cr(VI).


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Pham Dinh Du ◽  
Huynh Thi Minh Thanh ◽  
Thuy Chau To ◽  
Ho Sy Thang ◽  
Mai Xuan Tinh ◽  
...  

In the present paper, the synthesis of metal-organic framework MIL-101 and its application in the photocatalytic degradation of Remazol Black B (RBB) dye have been demonstrated. The obtained samples were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and nitrogen adsorption/desorption isotherms at 77 K. It was found that MIL-101 synthesized under optimal conditions exhibited high crystallinity and specific surface area (3360 m2·g-1). The obtained MIL-101 possessed high stability in water for 14 days and several solvents (benzene, ethanol, and water at boiling temperature). Its catalytic activities were evaluated by measuring the degradation of RBB in an aqueous solution under UV radiation. The findings show that MIL-101 was a heterogeneous photocatalyst in the degradation reaction of RBB. The mechanism of photocatalysis was considered to be achieved by the electron transfer from photoexcited organic ligands to metallic clusters in MIL-101. The kinetics of photocatalytic degradation reaction were analyzed by using the initial rate method and Langmuir-Hinshelwood model. The MIL-101 photocatalyst exhibited excellent catalytic recyclability and stability and can be a potential catalyst for the treatment of organic pollutants in aqueous solutions.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1771 ◽  
Author(s):  
Stefan Neatu ◽  
Mihaela M. Trandafir ◽  
Adelina Stănoiu ◽  
Ovidiu G. Florea ◽  
Cristian E. Simion ◽  
...  

This study presents the synthesis and characterization of lanthanum-modified alumina supported cerium–manganese mixed oxides, which were prepared by three different methods (coprecipitation, impregnation and citrate-based sol-gel method) followed by calcination at 500 °C. The physicochemical properties of the synthesized materials were investigated by various characterization techniques, namely: nitrogen adsorption-desorption isotherms, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and H2–temperature programmed reduction (TPR). This experimental study demonstrated that the role of the catalytic surface is much more important than the bulk one. Indeed, the incipient impregnation of CeO2–MnOx catalyst, supported on an optimized amount of 4 wt.% La2O3–Al2O3, provided the best results of the catalytic combustion of methane on our catalytic micro-convertors. This is mainly due to: (i) the highest pore size dimensions according to the Brunauer-Emmett-Teller (BET) investigations, (ii) the highest amount of Mn4+ or/and Ce4+ on the surface as revealed by XPS, (iii) the presence of a mixed phase (Ce2MnO6) as shown by X-ray diffraction; and (iv) a higher reducibility of Mn4+ or/and Ce4+ species as displayed by H2–TPR and therefore more reactive oxygen species.


2020 ◽  
Vol 13 (02) ◽  
pp. 2051004
Author(s):  
Jinyan Xiong ◽  
Wei Li ◽  
Kai Zhao ◽  
Weijie Li ◽  
Gang Cheng

Nanocrystallite aggregates have great potential in semiconductor-based photocatalysis toward environmental pollution removal. In this work, we reported the fabrication of broccoli-like zinc oxide nanoaggregates in the presence of beta-cyclodextrin in ethylene glycol-H2O medium. The composition and structure of the as-obtained ZnO nanoaggregates were characterized by powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. It was observed that the beta-cyclodextrin played an important role in the fabrication of such broccoli-like structure. A plausible formation mechanism was discussed on the basis of the controllable experiments. The photocatalytic performance of the products was studied through the photodegradation of rhodamine B under simulated sunlight irradiation. Compared to the spherical ZnO nanoaggregates and ZnO broken spheres, the broccoli-like ZnO exhibited superior photocatalytic efficiency. Based on the photocurrent and electrochemical measurement results, the higher separation efficiency of the photogenerated carriers and lower recombination efficiency of the photoinduced electron–hole pairs over the broccoli-like ZnO nanoaggregates contributed to their remarkable photocatalytic activity.


2002 ◽  
Vol 09 (02) ◽  
pp. 937-941 ◽  
Author(s):  
P. LUCHES ◽  
C. GIOVANARDI ◽  
T. MOIA ◽  
S. VALERI ◽  
F. BRUNO ◽  
...  

CoO layers have been grown by exposing to oxygen the (001) body-centered-tetragonal (bct) surface of a Co ultrathin film epitaxially grown on Fe(001). Different oxide thicknesses in the 2–15 ML range have been investigated by means of synchrotron-radiation-based techniques. X-ray photoelectron spectroscopy has been used to check the formation of the oxide films; X ray photoelectron diffraction has given information concerning the symmetry of their unit cell; grazing incidence X-ray diffraction has allowed to evaluate precisely their in-plane lattice constant. The films show a CoO(001) rocksalt structure, rotated by 45° with respect to the bct Co substrate, with the [100] direction parallel to the substrate [110] direction. Their in-plane lattice constant increases as a function of thickness, to release the in-plane strain due to the 3% mismatch between the bulk CoO phase and the underlying substrate.


Sign in / Sign up

Export Citation Format

Share Document