scholarly journals Influence of Charge Carriers Concentration and Mobility on the Gas Sensing Behavior of Tin Dioxide Thin Films

Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 591 ◽  
Author(s):  
Ruiwu Li ◽  
Yanwen Zhou ◽  
Maolin Sun ◽  
Zhen Gong ◽  
Yuanyuan Guo ◽  
...  

In order to investigate function of carrier behavior on gas-sensing properties, tin oxide-based films with different carrier concentration and mobility were obtained, by magnetron sputtering from the powder target, which was followed by further oxygen-management though the annealing treatment. The microstructure, surface morphology, electrical properties and gas sensitivity were characterized by XRD, Raman spectrum, photoluminescence spectrum, atomic force microscope, the hall effect system and electrochemical workstation, respectively. The results showed that all SnO2-based films had a tetragonal rutile phase with (101) preferred orientation. The introduction of fluorine and regulation of oxygen vacancies tuned carrier concentration from 1015/cm3 to 1021/cm3 and mobility from 102 cm2/V·s to 10−1 cm2/V·s. The decreasing carrier concentration as well as increasing mobility had a positively important function to improve the sensitivity of SnO2-based films. The air-annealed SnO2 film with lowest carrier concentration had a maximum sensitivity of R = 5.0, while vacuum-annealed SnO2:F film with the highest carrier concentration being the minimum sensitivity. This puts forward a novel reference for the design and application of SnO2-based gas sensing films.

2006 ◽  
Vol 497 (1-2) ◽  
pp. 355-360 ◽  
Author(s):  
Yan-Li Liu ◽  
Hai-Feng Yang ◽  
Yu Yang ◽  
Zhi-Min Liu ◽  
Guo-Li Shen ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (75) ◽  
pp. 39844-39852 ◽  
Author(s):  
Syed Khasim ◽  
Omar A Al-Hartomy

Recently, the gas-sensing properties of conducting polymer nanocomposites have been widely investigated. In this study we report the gas sensing properties of novel ortho- chloropolyaniline–ZnO nanocomposites.


2016 ◽  
Vol 34 (1) ◽  
pp. 204-211 ◽  
Author(s):  
Vishal V. Burungale ◽  
Rupesh S. Devan ◽  
Sachin A. Pawar ◽  
Namdev S. Harale ◽  
Vithoba L. Patil ◽  
...  

AbstractRapid NO2 gas sensor has been developed based on PbS nanoparticulate thin films synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR) method at different precursor concentrations. The structural and morphological properties were investigated by means of X-ray diffraction and field emission scanning electron microscope. NO2 gas sensing properties of PbS thin films deposited at different concentrations were tested. PbS film with 0.25 M precursor concentration showed the highest sensitivity. In order to optimize the operating temperature, the sensitivity of the sensor to 50 ppm NO2 gas was measured at different operating temperatures, from 50 to 200 °C. The gas sensitivity increased with an increase in operating temperature and achieved the maximum value at 150 °C, followed by a decrease in sensitivity with further increase of the operating temperature. The sensitivity was about 35 % for 50 ppm NO2 at 150 °C with rapid response time of 6 s. T90 and T10 recovery time was 97 s at this gas concentration.


2007 ◽  
Vol 1035 ◽  
Author(s):  
Amandeep Saluja ◽  
Jie Pan ◽  
Lei Kerr ◽  
Eunjung Cho ◽  
Seth Hubbard

AbstractIn this work, various ZnO nanostructures were synthesized and a detailed study on the effect of different process parameters such as temperature, carrier gas flow, inter-electrode spacing, gas concentration and material properties on gas sensitivity was conducted. Initial ZnO nanoparticles were prepared by a simple solution chemical process and characterized by Secondary Electron Microscopy (SEM) and Brunauer, Emmet and Teller (BET) Sorptometer to demonstrate the morphology and surface area respectively. Sensitivity of nano-platelets and porous films was measured for different concentrations of the analytes (H2, CO). High response was observed at room temperature for H2 gas with sensitivities in excess 80% for 60ppm and about 55% for 80ppm of H2 gas at room temperature were observed for the nano-platelets and the porous films respectively with short response and recovery times of about 200 seconds. The sensitivity of the nano-platelets to CO gas was also measured and found to be about near 90% for 80 ppm CO at operating temperatures of 200 °C.


2011 ◽  
Vol 9 (1) ◽  
pp. 328-331 ◽  
Author(s):  
Haijiao Zhang ◽  
Zhijin Tan ◽  
Lin Wang ◽  
Zhiyong Li ◽  
Ping Gu ◽  
...  

2020 ◽  
Vol 8 (14) ◽  
pp. 4604-4635 ◽  
Author(s):  
Muthaimanoj Periyasamy ◽  
Arik Kar

Tin dioxide (SnO2) is a material of ever increasing scientific attention as a result of its many constructive and varied physical properties: different morphological structures of SnO2 nanocrystals modulate the performance of diverse applications.


2021 ◽  
Vol 16 (2) ◽  
pp. 337-342
Author(s):  
Gaoqi Zhang ◽  
Fan Zhang ◽  
Kaifang Wang ◽  
Shanyu Liu ◽  
Ying Wang ◽  
...  

Indoor formaldehyde detection is of great important at present. Using efficient solvothermal method, nanosheet-constructed and nanorod-constructed hierarchical tin dioxide (SnO2) microspheres were successfully synthesized in this work and used for the gas sensing material for indoor formaldehyde application. The as-prepared two kinds of SnO2 gas sensing materials were applied to fabricate the gas sensors and formaldehyde gas sensing experiments were carried out. The HCHO gas sensing tests indicate that the gas response of the nanosheet-constructed SnO2 microspheres is about 1.7 times higher than that of the nanorod-constructed SnO2 microspheres. In addition, both of the two SnO2 based gas sensors show almost fast response and recovery time to HCHO gas. For the nanosheet-constructed microspheres, the response value is estimated to be 32.0 at 350 °C to 60 ppm formaldehyde gas, while the response and recovery times are 7 and 5 s, respectively. The simple and efficient preparation method and improved gas sensing properties show that the as-synthesized hierarchical SnO2 microsphere that is constructed by a large amount of nanosheets exhibits significant potential application for the indoor formaldehyde sensing.


Sign in / Sign up

Export Citation Format

Share Document