scholarly journals On the Generation of Infinitely Many Conservation Laws of the Black-Scholes Equation

Computation ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 65
Author(s):  
Winter Sinkala

Construction of conservation laws of differential equations is an essential part of the mathematical study of differential equations. In this paper we derive, using two approaches, general formulas for finding conservation laws of the Black-Scholes equation. In one approach, we exploit nonlinear self-adjointness and Lie point symmetries of the equation, while in the other approach we use the multiplier method. We present illustrative examples and also show how every solution of the Black-Scholes equation leads to a conservation law of the same equation.

2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Gülden Gün Polat ◽  
Özlem Orhan ◽  
Teoman Özer

We study the new conservation forms of the nonlinear fin equation in mathematical physics. In this study, first, Lie point symmetries of the fin equation are identified and classified. Then by using the relationship of Lie symmetry andλ-symmetry, newλ-functions are investigated. In addition, the Jacobi Last Multiplier method and the approach, which is based on the factλ-functions are assumed to be of linear form, are considered as different procedures for lambda symmetry analysis. Finally, the corresponding new conservation laws and invariant solutions of the equation are presented.


2002 ◽  
Vol 13 (5) ◽  
pp. 545-566 ◽  
Author(s):  
STEPHEN C. ANCO ◽  
GEORGE BLUMAN

An effective algorithmic method is presented for finding the local conservation laws for partial differential equations with any number of independent and dependent variables. The method does not require the use or existence of a variational principle and reduces the calculation of conservation laws to solving a system of linear determining equations similar to that for finding symmetries. An explicit construction formula is derived which yields a conservation law for each solution of the determining system. In the first of two papers (Part I), examples of nonlinear wave equations are used to exhibit the method. Classification results for conservation laws of these equations are obtained. In a second paper (Part II), a general treatment of the method is given.


2012 ◽  
Vol 24 (10) ◽  
pp. 1250030 ◽  
Author(s):  
LUCÍA BUA ◽  
IOAN BUCATARU ◽  
MODESTO SALGADO

In this paper, we study symmetries, Newtonoid vector fields, conservation laws, Noether's theorem and its converse, in the framework of the k-symplectic formalism, using the Frölicher–Nijenhuis formalism on the space of k1-velocities of the configuration manifold.For the case k = 1, it is well known that Cartan symmetries induce and are induced by constants of motions, and these results are known as Noether's theorem and its converse. For the case k > 1, we provide a new proof for Noether's theorem, which shows that, in the k-symplectic formalism, each Cartan symmetry induces a conservation law. We prove that, under some assumptions, the converse of Noether's theorem is also true and we provide examples when this is not the case. We also study the relations between dynamical symmetries, Newtonoid vector fields, Cartan symmetries and conservation laws, showing when one of them will imply the others. We use several examples of partial differential equations to illustrate when these concepts are related and when they are not.


2015 ◽  
Vol 81 (6) ◽  
Author(s):  
G. M. Webb ◽  
J. F. McKenzie ◽  
G. P. Zank

A recent paper by Webb et al. (J. Plasma Phys., vol. 80, 2014, pp. 707–743) on multi-symplectic magnetohydrodynamics (MHD) using Clebsch variables in an Eulerian action principle with constraints is further extended. We relate a class of symplecticity conservation laws to a vorticity conservation law, and provide a corrected form of the Cartan–Poincaré differential form formulation of the system. We also correct some typographical errors (omissions) in Webb et al. (J. Plasma Phys., vol. 80, 2014, pp. 707–743). We show that the vorticity–symplecticity conservation law, that arises as a compatibility condition on the system, expressed in terms of the Clebsch variables is equivalent to taking the curl of the conservation form of the MHD momentum equation. We use the Cartan–Poincaré form to obtain a class of differential forms that represent the system using Cartan’s geometric theory of partial differential equations


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640003 ◽  
Author(s):  
Stephen C. Anco

Symmetry properties of conservation laws of partial differential equations are developed by using the general method of conservation law multipliers. As main results, simple conditions are given for characterizing when a conservation law and its associated conserved quantity are invariant (and, more generally, homogeneous) under the action of a symmetry. These results are used to show that a recent conservation law formula (due to Ibragimov) is equivalent to a standard formula for the action of an infinitesimal symmetry on a conservation law multiplier.


Author(s):  
Filiz Tascan ◽  
Arzu Yakut

AbstractIn this work we study one of the most important applications of symmetries to physical problems, namely the construction of conservation laws. Conservation laws have important place for applications of differential equations and solutions, also in all physics applications. And so, this study deals conservation laws of first- and second-type nonlinear (NL) reaction diffusion equations. We used Ibragimov’s approach for finding conservation laws for these equations. And then, we found exact solutions of first- and second-type NL reaction diffusion equations with Lie-point symmetries.


2018 ◽  
Vol 21 (3) ◽  
pp. 150-159
Author(s):  
N. G. Khor’kova

Популярное в математике понятие интегрируемости дифференциальных уравнений (и столь же разнообразно трактуемое) тесно связано с существованием симметрий и законов сохранения. Все известные интегрируемые дифференциальные уравнения обладают бесконечными сериями симметрий и (или) законов сохранения. Однако также имеется целый ряд уравнений, важных для приложений, но имеющих крайне скудный запас симметрий или законов сохранения. Попытки расширить понятия симметрии и закона сохранения предпринимались разными авторами, и на эту тему имеется обширная литература. В данной статье представлен следующий результат. Если ℓ-нормальная система дифференциальных уравнений в частных производных имеет когомологически нетривиальный закон сохранения, то этот закон сохранения порождает бесконечную серию нелокальных законов сохранения. Этот факт обобщает аналогичный результат статьи автора для дифференциальных уравнений (не систем). Результат получен в рамках геометрической теории дифференциальных уравнений в частных производных. Согласно геометрическому подходу, многообразие, снабженное конечномерным распределением, удовлетворяющим условиям интегрируемости Фробениуса, называется диффеотопом (diffiety), если локально оно имеет вид бесконечно продолженного уравнения Ɛ∞. Диффеотопы являются объектами категории дифференциальных уравнений, введенной А.М. Виноградовым. Под симметриями уравнения понимают преобразования (конечные или инфинитизимальные) бесконечного продолжения уравнения, которые сохраняют распределение Картана, а под законами сохранения – (n-1)-e классы когомологий горизонтального комплекса де Рама уравнения, где n – число независимых переменных уравнения. Накрытием называется эпиморфизм  τ:Ɛ⟶ Ɛ∞ в категории дифференциальных уравнений, порождающий изоморфизм распределений. Симметрии и законы сохранения диффеотопа ࣟƐ называются нелокальными симметриями и законами сохранения уравнения ࣟƐ  Выбор подходящего накрытия позволяет получать новые (нелокальные) симметрии и законы сохранения исследуемого уравнения. В работе приведена конструкция одного накрытия и доказано существование бесконечных серий нелокальных законов сохранения у широкого класса систем дифференциальных уравнений в частных производных.системы дифференциальных уравнений в частных производных; накрытия дифференциальных уравнений; нелокальные симметрии и законы сохранения  The notion of integrability of differential equations is closely connected with the existence of symmetries and conservation laws. All known integrable differential equations have infinite series of symmetries and (or) conservation laws. However, there is also a number of equations that are important for applications, but with an extremely scarce stock of symmetries or conservation laws. Attempts to extend the concepts of symmetry and conservation law were made by different authors. This article presents the following result. If a ℓ-normal system of partial differential equations has a cohomologically nontrivial conservation law, then this conservation law generates an infinite series of non-local conservation laws. This fact generalizes the analogous result of the author for differential equations (not systems). The result is obtained within the framework of geometrical theory of partial differential equations (PDE). A manifold supplied with an infinite-dimensional distribution satisfying the Frobenius complete integrability condition is called a diffiety, if it is locally in the form of  Ɛ∞. Diffieties are objects of the category of differential equations introduced by A.M. Vinogradov. Symmetries of PDE are transformations (finite or infinitesimal) of the infinite prolongation  Ɛ∞ preserving the Cartan distribution, while conservation laws are (n-1)-cohomology classes of the horizontal de Rham cohomology. If a covering τ:Ɛ⟶ Ɛ∞ is given, then symmetries and conservation laws of the diffiety Ɛ are called nonlocal symmetries and conservation laws of the equation Ɛ .In appropriate coverings one can get new (nonlocal) symmetries and conservation laws for an equation under consideration. In this paper we investigate one covering and prove the existence of infinite series of nonlocal conservation laws.   


2012 ◽  
Vol 2012 ◽  
pp. 1-19 ◽  
Author(s):  
N. Wilson ◽  
A. H. Kara

Equivalent Lagrangians are used to find, via transformations, solutions and conservation laws of a given differential equation by exploiting the possible existence of an isomorphic algebra of Lie point symmetries and, more particularly, an isomorphic Noether point symmetry algebra. Applications include ordinary differential equations such as theKummer equationand thecombined gravity-inertial-Rossbywave equationand certain classes of partial differential equations related to multidimensional wave equations.


2016 ◽  
Vol 30 (28n29) ◽  
pp. 1640012 ◽  
Author(s):  
María Luz Gandarias ◽  
María Rosa

In this work, we consider a damped equation with a time-independent source term. We derive the classical Lie symmetries admitted by the equation as well as the reduced ordinary differential equations. We also present some exact solutions. Conservation laws for this equation are constructed by using the multiplier method.


2021 ◽  
Vol 20 ◽  
pp. 76-87
Author(s):  
Tshidiso Masebe

Lie Point symmetries and Euler’s formula for solving second order ordinary linear differential equations are used to determine symmetries for the one-dimensional Black- Scholes equation. One symmetry is utilized to determine an invariant solutions


Sign in / Sign up

Export Citation Format

Share Document