scholarly journals Intelligent Real-Time Deep System for Robust Objects Tracking in Low-Light Driving Scenario

Computation ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 117
Author(s):  
Francesco Rundo

The detection of moving objects, animals, or pedestrians, as well as static objects such as road signs, is one of the fundamental tasks for assisted or self-driving vehicles. This accomplishment becomes even more difficult in low light conditions such as driving at night or inside road tunnels. Since the objects found in the driving scene represent a significant collision risk, the aim of this scientific contribution is to propose an innovative pipeline that allows real time low-light driving salient objects tracking. Using a combination of the time-transient non-linear cellular networks and deep architectures with self-attention, the proposed solution will be able to perform a real-time enhancement of the low-light driving scenario frames. The downstream deep network will learn from the frames thus improved in terms of brightness in order to identify and segment salient objects by bounding-box based approach. The proposed algorithm is ongoing to be ported over a hybrid architecture consisting of a an embedded system with SPC5x Chorus MCU integrated with an automotive-grade system based on STA1295 MCU core. The performances (accuracy of about 90% and correlation coefficient of about 0.49) obtained in the experimental validation phase confirmed the effectiveness of the proposed method.

2016 ◽  
Vol 11 (4) ◽  
pp. 324
Author(s):  
Nor Nadirah Abdul Aziz ◽  
Yasir Mohd Mustafah ◽  
Amelia Wong Azman ◽  
Amir Akramin Shafie ◽  
Muhammad Izad Yusoff ◽  
...  

2011 ◽  
Vol 128-129 ◽  
pp. 1020-1024
Author(s):  
Hong Wu ◽  
Tao Han ◽  
Can Wang

Memory test technology is the most effective means to record the parameters of moving objects under special circumstances. This paper introduced the development of storage test systems based on ARM7LPC21XX. PHILIPS chip 16/32-bit microcontroller-LPC21XX was a 16/32-bit ARM7 TDMI-S CPU microcontroller based on a real-time emulation and embedded trace. It had two powers-saving modes-power down and idles, which could ensure the battery to work for a long time. The microcontroller internal 10-bit AD was used to sample data as well as SPI and NRF24L01 modules to realize communication.


2014 ◽  
Vol 1003 ◽  
pp. 207-210 ◽  
Author(s):  
Yan Fei Liu ◽  
Qi Li ◽  
Hao Fang ◽  
Hua Chun Xu

To improve the real-time performance of the meanshift algorithm in the embedded system, an improved meanshift algorithm for tracking moving target is proposed in this paper. In order to reduce the influence of background pixel in a target model, the target model is build by using the target model of continuous frames; to reduce the times of iteration, a kalman filter is used to predict the position of moving object in the current frame; to improve the accuracy of the target model, it is updated in real-time. At last, the improved algorithm is realized on a DM6437 platform and the experimental results show that the improved algorithm can track moving objects effectively.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Balaji M ◽  
Chandrasekaran M ◽  
Vaithiyanathan Dhandapani

A Novel Rail-Network Hardware with simulation facilities is presented in this paper. The hardware is designed to facilitate the learning of application-oriented, logical, real-time programming in an embedded system environment. The platform enables the creation of multiple unique programming scenarios with variability in complexity without any hardware changes. Prior experimental hardware comes with static programming facilities that focus the students’ learning on hardware features and programming basics, leaving them ill-equipped to take up practical applications with more real-time constraints. This hardware complements and completes their learning to help them program real-world embedded systems. The hardware uses LEDs to simulate the movement of trains in a network. The network has train stations, intersections and parking slots where the train movements can be controlled by using a 16-bit Renesas RL78/G13 microcontroller. Additionally, simulating facilities are provided to enable the students to navigate the trains by manual controls using switches and indicators. This helps them get an easy understanding of train navigation functions before taking up programming. The students start with simple tasks and gradually progress to more complicated ones with real-time constraints, on their own. During training, students’ learning outcomes are evaluated by obtaining their feedback and conducting a test at the end to measure their knowledge acquisition during the training. Students’ Knowledge Enhancement Index is originated to measure the knowledge acquired by the students. It is observed that 87% of students have successfully enhanced their knowledge undergoing training with this rail-network simulator.


2021 ◽  
Vol 11 (11) ◽  
pp. 4940
Author(s):  
Jinsoo Kim ◽  
Jeongho Cho

The field of research related to video data has difficulty in extracting not only spatial but also temporal features and human action recognition (HAR) is a representative field of research that applies convolutional neural network (CNN) to video data. The performance for action recognition has improved, but owing to the complexity of the model, some still limitations to operation in real-time persist. Therefore, a lightweight CNN-based single-stream HAR model that can operate in real-time is proposed. The proposed model extracts spatial feature maps by applying CNN to the images that develop the video and uses the frame change rate of sequential images as time information. Spatial feature maps are weighted-averaged by frame change, transformed into spatiotemporal features, and input into multilayer perceptrons, which have a relatively lower complexity than other HAR models; thus, our method has high utility in a single embedded system connected to CCTV. The results of evaluating action recognition accuracy and data processing speed through challenging action recognition benchmark UCF-101 showed higher action recognition accuracy than the HAR model using long short-term memory with a small amount of video frames and confirmed the real-time operational possibility through fast data processing speed. In addition, the performance of the proposed weighted mean-based HAR model was verified by testing it in Jetson NANO to confirm the possibility of using it in low-cost GPU-based embedded systems.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 469
Author(s):  
Hyun Woo Oh ◽  
Ji Kwang Kim ◽  
Gwan Beom Hwang ◽  
Seung Eun Lee

Recently, advances in technology have enabled embedded systems to be adopted for a variety of applications. Some of these applications require real-time 2D graphics processing running on limited design specifications such as low power consumption and a small area. In order to satisfy such conditions, including a specific 2D graphics accelerator in the embedded system is an effective method. This method reduces the workload of the processor in the embedded system by exploiting the accelerator. The accelerator assists the system to perform 2D graphics processing in real-time. Therefore, a variety of applications that require 2D graphics processing can be implemented with an embedded processor. In this paper, we present a 2D graphics accelerator for tiny embedded systems. The accelerator includes an optimized line-drawing operation based on Bresenham’s algorithm. The optimized operation enables the accelerator to deal with various kinds of 2D graphics processing and to perform the line-drawing instead of the system processor. Moreover, the accelerator also distributes the workload of the processor core by removing the need for the core to access the frame buffer memory. We measure the performance of the accelerator by implementing the processor, including the accelerator, on a field-programmable gate array (FPGA), and ascertaining the possibility of realization by synthesizing using the 180 nm CMOS process.


Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 692
Author(s):  
Wen-Chia Tsai ◽  
Jhih-Sheng Lai ◽  
Kuan-Chou Chen ◽  
Vinay M.Shivanna ◽  
Jiun-In Guo

This paper proposes a lightweight moving object prediction system to detect and recognize pedestrian crossings, vehicles cutting-in, and vehicles ahead applying emergency brakes based on a 3D Convolution network for behavior prediction. The proposed design significantly improves the performance of the conventional 3D convolution network (C3D) adapted to predict the behaviors employing behavior recognition network capable of performing object localization, which is pivotal in detecting the numerous moving objects’ behaviors, combining and verifying the detected objects with the results of the YOLO v3 detection model with that of the proposed C3D model. Since the proposed system is a lightweight CNN model requiring far lesser parameters, it can be efficiently realized on an embedded system for real-time applications. The proposed lightweight C3D model achieves 10 frames per second (FPS) on a NVIDIA Jetson AGX Xavier and yields over 92.8% accuracy in recognizing pedestrian crossing, over 94.3% accuracy in detecting vehicle cutting-in behavior, and over 95% accuracy for vehicles applying emergency brakes.


Sign in / Sign up

Export Citation Format

Share Document