scholarly journals Influence of Al and N Content and Cooling Rate on the Characteristics of Complex MnS Inclusions in AHSS

Crystals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1054
Author(s):  
Muhammad Nabeel ◽  
Michelia Alba ◽  
Neslihan Dogan

This study focused on the characteristics of complex MnS inclusions in advanced high strength steels. The effect of metal chemistry (Al and N) and the cooling rate of steel were evaluated by analyzing the inclusions present in five laboratory produced steels. The observed complex MnS inclusions contained Al2O3-MnS, AlN-MnS, and AlON-MnS. An increase in Al content from 0.5% to 6% increased the number of complex MnS inclusions by ~4 times. In comparison, a decrease of ~80% was observed due to the increased N content of steel from <10 ppm to ~50 ppm. MnS precipitation ratio was used to determine the potency of different inclusions forming complex MnS inclusions due to heterogeneous nucleation. It was found that the MnS precipitation ratio of the observed inclusions was related to their misfit with MnS, and it decreased in the order of AlN > AlON > Al2O3. Moreover, it was determined that AlN particles could be easily engulfed at the solidification front relative to Al2O3, which resulted in a higher MnS precipitation ratio for Al2O3 under slow cooling conditions.

2014 ◽  
Vol 59 (3) ◽  
pp. 1189-1192 ◽  
Author(s):  
L. Kučerová ◽  
H. Jirková ◽  
B. Mašek

Abstract Quenching and partitioning process with incorporated incremental deformation was optimized for six high strength steels with various contents of carbon (0.4-0.6%), manganese (0.6-1.2), silicon (2-2.6%) and chromium (0.8-1.3%). The optimization was gradually done for each steel with respect to the final microstructures and properties. The effect of cooling rate, quenching and partitioning temperature on microstructure development was further investigated. Interesting combinations of mechanical properties were obtained, with tensile strength in the region of 1600-2400 MPa and ductility of 6-20%.


2021 ◽  
Vol 1016 ◽  
pp. 1097-1102
Author(s):  
Sakari Pallaspuro ◽  
Ilkka Miettunen ◽  
S. Assa Aravindh ◽  
Sumit Ghosh ◽  
Wei Cao ◽  
...  

Quenching and partitioning produces advanced high-strength steels that utilise transformation-induced plasticity for improved strength and deformability. Microstructures of these steels consist mainly of tempered martensite and carbon-enriched retained austenite. A novel processing route of direct-quenching and partitioning (DQP) facilitates carbon partitioning from supersaturated martensite to untransformed austenite directly from the quench-stop temperature in a decelerated cooling that simulates slow cooling of a coiled strip. A major advantage of DQP steels is that they keep both the costs and emissions down by inexpensive alloying and energy-efficient processing. In this study, we investigate the microstructures of 0.2C and 0.4C laboratory hot-rolled DQP steels with comparison to a direct-quenched variant with high-resolution transmission electron microscopy as the main research technique. We show that the structures of DQP steels have frequent nanotwinned regions and can contain three different crystal structures with characteristic length scales ranging from few nm to ~200 nm. This is in remarkable contrast to the traditional lath-martensitic microstructure of the as-quenched material. Density functional theory calculations provide further insight into these findings with the calculated results of energetics, and show that carbon helps in stabilising the newly found omega phase. These results give further insight to the aspects that must be considered when assessing their effect on essential mechanical properties like strain hardening and toughness.


2021 ◽  
Vol 182 ◽  
pp. 106687
Author(s):  
Yu Xia ◽  
Chu Ding ◽  
Zhanjie Li ◽  
Benjamin W. Schafer ◽  
Hannah B. Blum

Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1136
Author(s):  
Marcel Carpio ◽  
Jessica Calvo ◽  
Omar García ◽  
Juan Pablo Pedraza ◽  
José María Cabrera

Designing a new family of advanced high-strength steels (AHSSs) to develop automotive parts that cover early industry needs is the aim of many investigations. One of the candidates in the 3rd family of AHSS are the quenching and partitioning (QP) steels. These steels display an excellent relationship between strength and formability, making them able to fulfill the requirements of safety, while reducing automobile weight to enhance the performance during service. The main attribute of QP steels is the TRIP effect that retained austenite possesses, which allows a significant energy absorption during deformation. The present study is focused on evaluating some process parameters, especially the partitioning temperature, in the microstructures and mechanical properties attained during a QP process. An experimental steel (0.2C-3.5Mn-1.5Si (wt%)) was selected and heated according to the theoretical optimum quenching temperature. For this purpose, heat treatments in a quenching dilatometry and further microstructural and mechanical characterization were carried out by SEM, XRD, EBSD, and hardness and tensile tests, respectively. The samples showed a significant increment in the retained austenite at an increasing partitioning temperature, but with strong penalization on the final ductility due to the large amount of fresh martensite obtained as well.


2004 ◽  
Vol 101 (7-8) ◽  
pp. 551-558 ◽  
Author(s):  
R. Bode ◽  
M. Meurer ◽  
T. W. Schaumann ◽  
W. Warnecke

Author(s):  
Mohammad Mehdi Kasaei ◽  
Marta C Oliveira

This work presents a new understanding on the deformation mechanics involved in the Nakajima test, which is commonly used to determine the forming limit curve of sheet metals, and is focused on the interaction between the friction conditions and the deformation behaviour of a dual phase steel. The methodology is based on the finite element analysis of the Nakajima test, considering different values of the classic Coulomb friction coefficient, including a pressure-dependent model. The validity of the finite element model is examined through a comparison with experimental data. The results show that friction affects the location and strain path of the necking point by changing the strain rate distribution in the specimen. The strain localization alters the contact status from slip to stick at a portion of the contact area from the pole to the necking zone. This leads to the sharp increase of the strain rate at the necking point, as the punch rises further. The influence of the pressure-dependent friction coefficient on the deformation behaviour is very small, due to the uniform distribution of the contact pressure in the Nakajima test. Moreover, the low contact pressure range attained cannot properly replicate real contact condition in sheet metal forming processes of advanced high strength steels.


2019 ◽  
Vol 49 (1) ◽  
pp. 327-359 ◽  
Author(s):  
Alan Taub ◽  
Emmanuel De Moor ◽  
Alan Luo ◽  
David K. Matlock ◽  
John G. Speer ◽  
...  

Reducing the weight of automobiles is a major contributor to increased fuel economy. The baseline materials for vehicle construction, low-carbon steel and cast iron, are being replaced by materials with higher specific strength and stiffness: advanced high-strength steels, aluminum, magnesium, and polymer composites. The key challenge is to reduce the cost of manufacturing structures with these new materials. Maximizing the weight reduction requires optimized designs utilizing multimaterials in various forms. This use of mixed materials presents additional challenges in joining and preventing galvanic corrosion.


Sign in / Sign up

Export Citation Format

Share Document