scholarly journals One-Step Fabrication of Inverted Pyramid Textured Silicon Wafers via Silver-Assisted Chemical Etching Combing with Synergism of Polyvinylpyrrolidone (PVP)

Crystals ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 459
Author(s):  
Yuchen Liu ◽  
Kousuo Dong ◽  
Linsheng Bian ◽  
Zisheng Guan

Inverted pyramid-texturing of silicon surface has been proven to have great application potential in silicon solar cells. In this paper, we utilized Ag-assisted chemical etching (Ag–ACE) technology combing with polyvinylpyrrolidone (PVP) to fabricate an inverted pyramid textured Si surface. We call it Ag@PVP–ACE. The effect of different experimental parameters on etching results was observed. We show that the microstructure of the Si surface exhibited two states as the concentration of NH4HF2 and PVP concentration changed: polishing and inverted pyramid texturing. Meanwhile, we found inverted pyramids easier to form at the high temperature and low H2O2 concentration of the etching system. Consequently, compared to inverted pyramid structures fabricated by nanostructure rebuilding (NSR) technology and Ag@PVP–ACE, we consider that Ag@PVP–ACE technology could become a viable strategy for fabricating inverted pyramid textured Si wafers in Si solar cells production.

2017 ◽  
Vol 5 (35) ◽  
pp. 9005-9011 ◽  
Author(s):  
Ju Hwan Kim ◽  
Dong Hee Shin ◽  
Ha Seung Lee ◽  
Chan Wook Jang ◽  
Jong Min Kim ◽  
...  

The co-doping of graphene with Au nanoparticles and bis(trifluoromethanesulfonyl)-amide is employed for the first time to enhance the performance of graphene/porous Si solar cells.


2020 ◽  
Vol 11 ◽  
pp. 2
Author(s):  
Derese Desta ◽  
Rita Rizzoli ◽  
Caterina Summonte ◽  
Rui N. Pereira ◽  
Arne Nylandsted Larsen ◽  
...  

The article presents a nanoparticle-based buried light-scattering (BLiS) back-reflector design realized through a simplified nanofabrication technique for the purpose of light-management in solar cells. The BLiS structure consists of a flat silver back-reflector with an overlying light-scattering bilayer which is made of a TiO2 dielectric nanoparticles layer with micron-sized inverted pyramidal cavities, buried under a flat-topped silicon nanoparticles layer. The optical properties of this BLiS back-reflector show high broadband and wide angular distribution of diffuse light-scattering. The efficient light-scattering by the buried inverted pyramid back-reflector is shown to effectively improve the short-circuit-current density and efficiency of the overlying n-i-p amorphous silicon solar cells up to 14% and 17.5%, respectively, compared to the reference flat solar cells. A layer of TiO2 nanoparticles with exposed inverted pyramid microstructures shows equivalent light scattering but poor fill factors in the solar cells, indicating that the overlying smooth growth interface in the BLiS back-reflector helps to maintain a good fill factor. The study demonstrates the advantage of spatial separation of the light-trapping and the semiconductor growth layers in the photovoltaic back-reflector without sacrificing the optical benefit.


2014 ◽  
Vol 14 (12) ◽  
pp. 9224-9231 ◽  
Author(s):  
Bhaskar Parida ◽  
Jaeho Choi ◽  
Gyoungho Lim ◽  
Seungil Park ◽  
Keunjoo Kim

ACS Omega ◽  
2018 ◽  
Vol 3 (9) ◽  
pp. 10898-10906 ◽  
Author(s):  
Ioannis Leontis ◽  
Martha A. Botzakaki ◽  
Stavroula N. Georga ◽  
A. Galiouna Nassiopoulou

RSC Advances ◽  
2015 ◽  
Vol 5 (124) ◽  
pp. 102682-102688 ◽  
Author(s):  
Ming Hong ◽  
Tongtong Xuan ◽  
Jiaqing Liu ◽  
Ziyao Jiang ◽  
Yiwei Chen ◽  
...  

CIS/ZnS QDs were synthesized by microwave irradiation in air. The fabricated QDs/PMMA composite films were first applied to Si solar cells to improve the conversion efficiency by 3.8%.


2015 ◽  
Vol 40 ◽  
pp. 391-396 ◽  
Author(s):  
Youngseok Lee ◽  
Heeseok Kim ◽  
Shahzada Qamar Hussain ◽  
Sangmyung Han ◽  
Nagarajan Balaji ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (98) ◽  
pp. 55300-55304 ◽  
Author(s):  
Kejia Jiao ◽  
DangWen Zhang ◽  
Yunfa Chen

A facile method – graphene on silicon (G/Si) solar cells prepared by spray coating – is developed. The efficiency of spray-coated G/Si solar cells can reach 4.41%, comparable to that of conventional CVD-G/Si solar cells. This approach is done in air at low temperature, and is easy to scale up, making it appealing for the mass production of efficient and cost-effective G/Si solar cells.


Sign in / Sign up

Export Citation Format

Share Document