scholarly journals Novel LaAOx/g-C3N4 (A = V, Fe, Co) Heterojunctions with Enhanced Photocatalytic Degradation of Norfloxacin under Visible Light

Crystals ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1173
Author(s):  
Jiwen Jiang ◽  
Yonghua Li

In this study, novel photocatalysts LaAOx/g-C3N4 (A = V, Fe, Co) were prepared by the hydrothermal method, through which LaAOx and g-C3N4 were mixed and ultrasonically oscillated to gain heterojunction catalysts. All the samples were characterized by XRD, SEM, FT-IR, XPS, DRS, and PL to ensure the successful integration of LaAOx with g-C3N4. The obtained results showed that LaAOx/g-C3N4 (A = V, Fe, Co) could effectually improve the separation efficiency of photogenerated carriers during the photodegradation process, thus improving the photodegradation efficiency, while among them, LaFeO3/g-C3N4 showed the best photocatalytic performance and degradation of norfloxacin under visible light, reaching up to 95% in 180 min, which was 9.32 times higher than pristine g-C3N4. From the discussed results above, the possible mechanism of the photodegradation process was put forward. This study supplies a promising method to gain g-C3N4-based photocatalysts for antibiotics removal.

Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 756
Author(s):  
Zhengru Zhu ◽  
Songlin Han ◽  
Yongqiang Cao ◽  
Junchao Jiang

In this study, novel photocatalysts MVO4/g-C3N4 (M = La, Gd) were prepared by the hydrothermal method, through which different loading amounts of 10–50%MVO4 and g-C3N4 were mixed and ultrasonically oscillated to gain heterojunction catalysts. All the samples were characterized by XRD, SEM, TEM, FT-IR, XPS, Us-vis, and PL to ensure the successful integration of LaVO4 and GdVO4 with g-C3N4. The obtained results showed that MVO4/g-C3N4 could effectually improve the separation efficiency of photogenerated carriers during the photodegradation process, thus improving the photodegradation efficiency, while among them, 40%GdVO4/g-C3N4 showed the best photocatalytic performance and degradation of tetracycline hydrochloride, reaching up to 91% for 3 h, which was 3.64 times higher than pristine g-C3N4. From the discussed results above, the possible mechanism of the photodegradation process was put forward. This study supplies a promising method to gain g-C3N4-based photocatalysts for antibiotics removal.


Polymers ◽  
2018 ◽  
Vol 10 (10) ◽  
pp. 1118 ◽  
Author(s):  
Tianhao Jiang ◽  
Chaoqun Shang ◽  
Qingguo Meng ◽  
Mingliang Jin ◽  
Hua Liao ◽  
...  

Herein, we synthesized BiOBr/ultrathin g-C3N4/ternary heterostructures modified with black phosphorous quantum dots using a simple water bath heating and sonication method. The ternary heterostructure was then used for the photocatalytic degradation of tetracycline in visible light, with an efficiency as high as 92% after 3 h of irradiation. Thus, the photodegradation efficiency is greatly improved compared to that of ultrathin g-C3N4, BiOBr, and black phosphorous quantum dots alone. The synthesized ternary heterostructure improves the charge separation efficiency, thus increasing the photodegradation efficiency. This work provides a new and efficient method for the degradation of antibiotics in the environment.


RSC Advances ◽  
2014 ◽  
Vol 4 (72) ◽  
pp. 38124-38132 ◽  
Author(s):  
Yuyu Bu ◽  
Zhuoyuan Chen ◽  
Chang Feng ◽  
Weibing Li

The formation of an effective heterojunction electric field at the interface between g-C3N4 and Ag@AgCl significantly strengthens the separation efficiency of the photogenerated electrons and holes, leading to a dramatic promotion of the photocatalytic degradation performance.


2020 ◽  
Vol 10 (9) ◽  
pp. 3238
Author(s):  
Min Liu ◽  
Guangxin Wang ◽  
Panpan Xu ◽  
Yanfeng Zhu ◽  
Wuhui Li

In this study, the Ag3PO4/SnO2 heterojunction on carbon cloth (Ag3PO4/SnO2/CC) was successfully fabricated via a facile two-step process. The results showed that the Ag3PO4/SnO2/CC heterojunction exhibited a remarkable photocatalytic performance for the degradation of Rhodamine B (RhB) and methylene blue (MB), under visible light irradiation. The calculated k values for the degradation of RhB and MB over Ag3PO4/SnO2/CC are 0.04716 min−1 and 0.04916 min−1, which are higher than those calculated for the reactions over Ag3PO4/SnO2, Ag3PO4/CC and SnO2/CC, respectively. The enhanced photocatalytic activity could mainly be attributed to the improved separation efficiency of photogenerated electron-hole pairs, after the formation of the Ag3PO4/SnO2/CC heterojunction. Moreover, carbon cloth with a large specific surface area and excellent conductivity was used as the substrate, which helped to increase the contact area of dye solution with photocatalysts and the rapid transfer of photogenerated electrons. Notably, when compared with the powder catalyst, the catalysts supported on carbon cloth are easier to quickly recycle from the pollutant solution, thereby reducing the probability of recontamination.


2020 ◽  
Vol 20 (9) ◽  
pp. 5426-5432
Author(s):  
G. Gnanamoorthy ◽  
M. Muthukumaran ◽  
P. Varun Prasath ◽  
V. Karthikeyan ◽  
V. Narayanan ◽  
...  

Photocatalysts provide excellent potential for the full removal of organic chemical pollutants as an environmentally friendly technology. It has been noted that under UV-visible light irradiation, nanostructured semiconductor metal oxides photocatalysts can degrade different organic pollutants. The Sn6SiO8/rGO nanocomposite was synthesized by a hydrothermal method. The Sn6SiO8 nanoparticles hexagonal phase was confirmed by XRD and functional groups were analyzed by FT-IR spectroscopy. The bandgap of Sn6SiO8 nanoparticles (NPs) and Sn6SiO8/GO composites were found to be 2.7 eV and 2.5 eV, respectively. SEM images of samples showed that the flakes like morphology. This Sn6SiO8/rGO nanocomposite was testing for photocatalytic dye degradation of MG under visible light illumination and excellent response for the catalysts. The enhancement of photocatalytic performance was mainly attributed to the increased light absorption, charge separation efficiency and specific surface area, proved by UV-vis DRS. Further, the radical trapping experiments revealed that holes (h+) and superoxide radicals (·O−2) were the main active species for the degradation of MG, and a possible photocatalytic mechanism was discussed.


2021 ◽  
Author(s):  
Lijie Wang ◽  
Qiang Li ◽  
Xiaoxiao Lu ◽  
Zhenfei Tian ◽  
Shiwu He ◽  
...  

A series of novel three-dimensional (3D) CoTiO3/BiOBr (CTBB) hierarchical heterostructures were prepared via a simple hydrothermal method. In comparison with pure CoTiO3 and BiOBr, all the CTBB nanocomposites display enhanced...


2016 ◽  
Vol 52 (30) ◽  
pp. 5316-5319 ◽  
Author(s):  
Wenjie Fan ◽  
Haibo Li ◽  
Fengyi Zhao ◽  
Xujing Xiao ◽  
Yongchao Huang ◽  
...  

BiOI nanosheets with highly exposed (001) and surface disorders are used for efficient photocatalytic HCHO oxidation under visible light irradiation.


RSC Advances ◽  
2015 ◽  
Vol 5 (7) ◽  
pp. 4905-4908 ◽  
Author(s):  
Yan Wu ◽  
Hanjin Luo ◽  
Xiaolu Jiang ◽  
Hou Wang ◽  
Junjie Geng

To improve the utilization efficiency of the Bi25FeO40 catalyst, Bi25FeO40-reduced graphene oxide (rGO) composite photo-catalysts were prepared by a facile hydrothermal method.


2019 ◽  
Vol 43 (6) ◽  
pp. 2665-2675 ◽  
Author(s):  
Xiaojiao Yuan ◽  
Mingxuan Sun ◽  
Yuan Yao ◽  
Xiaojing Lin ◽  
Jifeng Shi

N/Ti3+-codoped triphasic TiO2/g-C3N4 heterojunctions were successfully prepared by a one-step in situ hydrothermal method, and they demonstrated considerably enhanced photocatalytic performance.


2017 ◽  
Vol 48 ◽  
pp. 49-61 ◽  
Author(s):  
A. Malathi ◽  
J. Madhavan

In the present study, visible light active CuS/CdS nanocomposites of various compositions (1%, 2% and 3%) were synthesized via wet impregnation method and these photocatalysts were characterized by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and UV-visible diffuse reflectance spectroscopy (DRS). The photocatalytic degradation efficiency of the synthesized photocatalysts was evaluated from the degradation of methylene blue (MB) under the visible light irradiation. Among all compositions, a 1% CuS/CdS nanocomposite showed about 89.5% degradation in 90 min than the pure CuS, CdS and other composites. Photoluminescence and photoelectrochemical measurements indicated that the 1% CuS/CdS nanocomposite greatly enhanced the charge generation and restrained the recombination of photogenerated electron-hole pairs. A possible mechanism of photocatalytic degradation has been proposed.


Sign in / Sign up

Export Citation Format

Share Document