scholarly journals Mexican Coastal Dunes: Recipients and Donors of Alien Flora

Diversity ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 530
Author(s):  
M. Luisa Martínez ◽  
Gonzalo Castillo-Campos ◽  
José G. García-Franco ◽  
Octavio Pérez-Maqueo ◽  
Gabriela Mendoza-González ◽  
...  

The invasion of natural communities by exotic plants, which may turn into invasive or potentially invasive, is one of the most severe known threats to biodiversity, and coastal dunes are among the most affected habitats. Mexico’s coastal dunes are abundant and contain high plant biodiversity but attempts to determine the occurrence and impact of exotic plants are absent. First, we explored the number of invasive plant species found on Mexican coastal dunes. Second, we analyzed if the coastal dune flora native from Mexico acts as a source of invasive species worldwide. We found the relevant spread of exotic plants towards and from Mexico, reaching high percentages: 5% of the coastal dune flora are considered exotic plants; this increases to 8.7% when only plants typical of the coastal dune environment are considered. The Mexican coastal dunes flora is also a relevant source of invasive plants affecting all continents. Furthermore, almost half of the 35 worst worldwide invasive plants (according to the Global Invasive Species Database GISD) grow on Mexican coastal dunes, most native to Mexico and invasive elsewhere. Indeed, the worldwide exchange of coastal dune flora between Mexico and the world seems massive, relevant and highlights the need for worldwide and countrywide management and control strategies.

2017 ◽  
Vol 4 (1) ◽  
pp. 148-160
Author(s):  
Arjun C.P ◽  
Anoop V.K ◽  
Tijo K.J ◽  
Anoopkumar T.K ◽  
Roshnath R

Butterfly diversity was recorded from Nov (2013) - May (2014) in Pookode region. A total number of 128 species recorded from the five families; Nymphalidae (46 species) Lycaenidae (28 species), Hesperiidae (22 species), Pieridae (17 species) and Papilionidae (15 species) respectively. During the survey invasive plant species were also recorded. There were 36 species of invasive plants from 18 families identified from the study area. More butterflies were attracted towards nectar offering invasive plants. Chromolaena odorata, Ipomea cairica, Lantana camara, Merremia vitifolia, Mikania micrantha, Mimosa diplotricha, Pennisetumpolystachyon, Pteridium aquilinum, Quisqualis indica and Sphagneticola trilobata were the major invasive plants found in the Pookode region and their flower attracts butterfly for pollination. Even though nectar offered by the plants are supportive for growth, in long run these species can affect butterfly population bydeclining native host larval plant species for butterfly reproduction. Invasive species compete with the native flora and reduce its population. Management practices like physical, chemical and modern bio control measures could be used for eradicating of invasive plants. Wise use of invasive plants for other economical purpose such as bio-fuel, medicinal purpose, bio-pesticide and handicraft could be suggested. Successful management of invasive species are needed for conserving Lepidoptera fauna and other native biota of the area.


2020 ◽  
Vol 13 (2) ◽  
pp. 195-203
Author(s):  
Rebecca A Fletcher ◽  
Kayla M Varnon ◽  
Jacob N Barney

Abstract Aims Exotic invasive species are often exposed to strong selection pressures in their new ranges that can often lead to substantial intraspecific variation. Population differentiation in the timing of life history events in response to climate gradients is thought to be an important mechanism facilitating the range expansion of many invasive species. For seed producing plants, the timing of seed germination determines the first environmental conditions experienced by newly emerged germinates, and can have important implications for the successful colonization, establishment and spread of invasive plants—though the role of germination in the success of invasive plants remains poorly understood. Methods We assessed the variation in seed germination dynamics among 10 populations of the invasive plant Johnsongrass (Sorghum halepense) across its North American distribution, capturing both a temperature and precipitation gradient, and whether that variation is associated with home climate. Seeds were exposed to a wide range of temperatures (11–48°C) and two water availability treatments. Important Findings We found that Johnsongrass seeds germinated across a wide range of temperatures, but there was substantial variation among populations in the proportion of seeds that germinated in response to both temperature and water availability. Evidence indicates that as Johnsongrass expanded its range from warmer climates into cooler climates, there was a concurrent shift in the germination temperature niche to cooler temperatures. Our results suggest that the germination of Johnsongrass seeds has adapted to home climate allowing this invader to maximize germination throughout its range, and that this may be an important contributing factor to its invasion into new environments.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Md. Habibur Rahman ◽  
Bishwajit Roy

Invasive plants were planted in Bangladesh to improve the stand stock quickly and meet the country’s rapidly growing demand for timber. Although invasive species have negative impacts on local ecosystems, but some species are useful too. Therefore, the present study was conducted in and around two protected forests of Bangladesh to assess the status, species diversity, and curative uses of invasive plants. A total of 60 sample plots were surveyed from 5 habitat types, for example, forest, roadside, homestead, fallow land, and others. Plants uses data were collected through interviews and focus group discussions. Study recorded 43 invasive medicinal plant species belonging to 28 families, of which Asteraceae constituted the highest family importance value (21.9). Among the habitat types, fallow land (32 species) and roadside (29 species) possess the highest number of species. Based on people’s perceptions, plants were categorized into three level of invasion: low (11 species), moderate (19 species), and high (13 species). The use of aerial plant parts was higher (68%) than the whole plant (17%). Consensus of local community’s (ICF) was high in managing gastrointestinal (0.65) followed by respiratory (0.60) diseases. A number of biological diversity indices were applied to quantify definite diversity. Therefore, a national programme must be initiated to increased invasive plant inventory, monitoring, and research on distinguishing the harmful from the harmless species and identifying the potential uses of invasive species.


2020 ◽  
Vol 8 (3) ◽  
pp. 351
Author(s):  
Bina Swasta Sitepu

Historically, and based on the latest conditions, Samboja Research Forest has a fairly high vulnerability to the presence of invasive species that can interfere with ecosystem stability and forest succession. However, data collection and risk assessment of invasive species have not been conducted in the forest area. The study was carried out to support the management of Samboja Research Forest, particularly in controlling invasive species. The study was conducted with exploration techniques in open areas, secondary forests, and primary forests. The density and frequency data of invasive plants were obtained using random plots in secondary and primary forest areas. The results showed the presence of 52 invasive plant species in the Samboja Research Forest area with dominance by shrubs and herbs. Based on plants distribution and density, four crucial invasive plant species in Samboja Research Forest were identified, namely: Acacia mangium, Spathodea campanulata, Miconia crenata, and Piper aduncum. The management of invasive species was carried out in two stages, short term, through manual weeding, and in the long term, with the prevention, eradication, and periodic risk assessment.Keywords: invasive alien species, Kalimantan, eradication, Spathodea campanulata


Author(s):  
Susan Kalisz ◽  
Stephanie N. Kivlin ◽  
Lalasia Bialic-Murphy

Abstract Invasive species utilize a wide array of trait strategies to establish in novel ecosystems. Among these traits is the capacity to produce allelopathic compounds that can directly inhibit neighboring native plants or indirectly suppress native plants via disruption of beneficial belowground microbial mutualisms, or altered soil resources. Despite the well-known prevalence of allelopathy among plant taxa, the pervasiveness of allelopathy among invasive plants is unknown. Here we demonstrate that the majority of the 524 invasive plant species in our database produce allelochemicals with the potential to negatively affect native plant performance. Moreover, allelopathy is widespread across the plant phylogeny, suggesting that allelopathy could have a large impact on native species across the globe. Allelopathic impacts of invasive species are often thought to be present in only a few plant clades (e.g., Brassicaceae). Yet our analysis shows that allelopathy is present in 72% of the 113 plant families surveyed, suggesting that this ubiquitous mechanism of invasion deserves more attention as invasion rates increase across the globe.


2008 ◽  
Vol 1 (4) ◽  
pp. 399-413 ◽  
Author(s):  
Cynthia S. Brown ◽  
Val J. Anderson ◽  
Victor P. Claassen ◽  
Mark E. Stannard ◽  
Linda M. Wilson ◽  
...  

AbstractInvasive plants are a common problem in the management and restoration of degraded lands in the semiarid western United States, but are often not the primary focus of restoration ecologists. Likewise, restoring native vegetation has not been a major concern of weed scientists. But trends in the literature demonstrate increasing overlap of these fields, and greater collaboration between them can lead to improved efficacy of restoration efforts. Succession and ecosystem development are the products of complex interactions of abiotic and biotic factors. Our greatest restoration and invasive plant management successes should result when we take advantage of these natural processes. Recent shifts in management objectives have generated approaches to directing plant community development that utilize species that are strong competitors with invasive species as a bridge to the establishment of native perennial vegetation. Soil water and nutrient characteristics and their interactions can affect desired and undesired plant species differentially and may be manipulated to favor establishment and persistence of desired perennial plant communities. Selection of appropriate plant materials is also essential. Species assemblages that suppress or exclude invaders and competitive plant materials that are well adapted to restoration site conditions are important keys to success. We provide guidelines for restoration based on the fundamental ecological principles underlying succession. Knowledge of the complex interactions among the biotic and abiotic factors that affect successional processes and ecosystem development, and increased collaboration between weed scientists and restoration ecologists hold promise for improving restoration success and invasive species management.


2007 ◽  
Vol 61 (2-3) ◽  
pp. 237-245 ◽  
Author(s):  
Shefali V. Mehta ◽  
Robert G. Haight ◽  
Frances R. Homans ◽  
Stephen Polasky ◽  
Robert C. Venette

Author(s):  
Pham Thi Kim Thoa, Vu Thi Bich Hau, Nguyen Van Hieu Pham

Invasive species threaten the biodiversity and the function of ecosystems. Drone image, satellite images, and image analysis software were used to create the map of invasive distribution and the potential spreading of invasive plants. 13 most invasive plants were identified with 11 species listed as invasive species in Southeast Asia and 5 of them in the 100 world’s invasive species by IUCN. Three species Merremia boisiana (Gagn.) van Ooststr., Ipomoea eberhardtii Gagn, and Mimosa pigra were identified as the species with high-ranking impacts on biodiversity and ecosystem biodiversity in Ba Na - Nui Chua Nature Reserve (BNNR). Ipomoea eberhardtii Gagn shows the highest spreading rate at 0.65 ± 0.06 ha/month, followed by Merremia boisiana (Gagn.) van Ooststr) and Mimosa pigra at 0.12 ± 0.01 ha/month and 0.01 ± 0.001 ha/month respectively. Fresh biomass of Ipomoea eberhardtii Gagn; Merremia boisiana (Gagn.); Mimosa pigra and Sphagnetola trilobata (L.) Pruski in BNNR are 15.67; 14.9; 8.1 and 6.8 ton/ha. The database of invasive plant distribution and potential spreading will be used to monitor strategies and invasive weeds management in BNNR.


2021 ◽  
Author(s):  
Dusanka Vujanovic ◽  
Gianalberto Losapio ◽  
Stanko Milic ◽  
Dubravka Milic

Despite increasing evidence indicating that invasive species are harming ecological systems and processes, impacts of multiple invasions, and the linkages between these events and changes in vegetation and soil are inadequately documented and remain poorly understood. Addressing multiple invasions would help to highlight high priority invaders and would aid in designing more effective control strategies, contributing to environmental restoration and sustainability. In this work, we tested the impact of three concurring invasive plant species, Amorpha fruticosa, Fraxinus pennsylvanica and Acer negundo, on soil conditions and native plant diversity. The research was conducted in riparian ecosystem and included the following treatments: (1) co-occurrence of the three invasive plant species, (2) occurrence of a single invasive species, and (3) control, i.e., absence of invasive species. Our findings revealed that the impact of invasive plants on soil properties and native plant diversity is magnified by their co-occurrence. Soil in mixed plots (those populated with all three invaders) contained much higher levels of nitrifying bacteria (NB), organic matter (Om), nitrogen (N), and carbon (C) as well as lower carbon to nitrogen ratio (C:N) levels, compared to single species invaded plots and control plots. Mixed plots were also characterized by reduced native plant diversity compared to single species invaded and control plots. Differences in soil conditions and native plant diversity revealed the interactive potential of invasive plants in depleting biodiversity, and thus in affecting ecological and biogeochemical processes. Our results highlight the need to study the impact of multispecies invasion and suggest that sites in riparian areas affected by co-occurring invaders, should be prioritized for ecosystem restoration. Keywords: Acer negundo, Amorpha fruticosa, Fraxinus pennsylvanica, invasive plants, multiple invasions, soil properties


Botany ◽  
2016 ◽  
Vol 94 (12) ◽  
pp. 1151-1160 ◽  
Author(s):  
Katie V. Spellman ◽  
Christa P.H. Mulder ◽  
Matthew L. Carlson

In pollinator-limited ecosystems in the earliest stages of the invasion process, the effects of invasive plants on the pollination and reproduction of co-flowering native plants may be particularly sensitive to the distance between native and non-native plants. Our study tests how the distance from invasive plant patches affects the pollination and reproduction of two native boreal shrubs. We established circular sites with plots of flowering Vaccinium vitis-idaea L. and Rhododendron groenlandicum (Oeder) Kron and Judd spanning from 1 to 40 m from the site center. In 2011 and 2012, we added flowering non-native Melilotus albus Medik. to the center of sites in small patches (40 individuals) or large patches (120 individuals) and left other sites as controls. In some cases, the effects of M. albus were uniform across the 40 m distance, such as the change in V. vitis-idaea seed production when large patches of M. albus were added. In other cases, relationships with distance were found, and changes in percent pollination or seed production occurred most rapidly over the first 10 m from the patch. Our data supports the hypothesis that the detectable impact an invasive species has on the pollination of native species is affected by the spatial scale over which it is evaluated.


Sign in / Sign up

Export Citation Format

Share Document