scholarly journals One-Dimensional Modelling of a Trilateral Flash Cycle System with Two-Phase Twin-Screw Expanders for Industrial Low-Grade Heat to Power Conversion

Designs ◽  
2019 ◽  
Vol 3 (3) ◽  
pp. 41 ◽  
Author(s):  
Giuseppe Bianchi ◽  
Matteo Marchionni ◽  
Stuart Kennedy ◽  
Jeremy Miller ◽  
Savvas Tassou

This paper provides an overview of a one-dimensional modelling methodology for equipment and systems for heat to power conversion based on a staggered grid space discretization and implemented in the commercial software GT-SUITE®. Particular attention is given to a newly developed modelling procedure for twin-screw machines that is based on a chamber modelling approach and considers leakage paths between cells and with the casing. This methodology is then applied to a low-grade heat to power conversion system based on a Trilateral Flash Cycle (TFC) equipped with two parallel two-phase twin-screw expanders and a control valve upstream of the machines to adapt the fluid quality for an optimal expander operation. The standalone expander model is used to generate performance maps of the machine, which serve as inputs for the TFC system model. Parametric analyses are eventually carried out to assess the impact of several operating parameters of the TFC unit on the recovered power and cycle thermal efficiency. The study shows that the most influencing factors on the TFC system’s performance are the inlet temperature of the heat source and the expander speed. While the first depends on the topping industrial process, the expander speed can be used to optimize and control the TFC system operation also in transient or off-design operating conditions.

2013 ◽  
Vol 106 ◽  
pp. 337-354 ◽  
Author(s):  
Roochi Solanki ◽  
Richard Mathie ◽  
Amparo Galindo ◽  
Christos N. Markides
Keyword(s):  

Author(s):  
Fan Gong ◽  
Yong Huang

The objective of this work is to investigate the flame stabilization mechanism and the impact of the operating conditions on the characteristics of the steady, lean premixed flames. It’s well known that the flame base is very important to the existence of a flame, such as the flame after a V-gutter, which is typically used in ramjet and turbojet or turbofan afterburners and laboratory experiments. We performed two-dimensional simulations of turbulent premixed flames anchored downstream of the heat-conducting V-gutters in a confined passage for kerosene-air combustion. The flame bases are symmetrically located in the shear layers of the recirculation zone immediately after the V-gutter’s trailing edge. The effects of equivalence ratio of inlet mixture, inlet temperature, V-gutter’s thermal conductivity and inlet velocity on the flame base movements are investigated. When the equivalence ratio is raised, the flame base moves upstream slightly and the temperature gradient dT/dx near the flame base increases, so the flame base is strengthened. When the inlet temperature is raised, the flame base moves upstream very slightly, and near the flame base dT/dx increases and dT/dy decreases, so the flame base is strengthened. As the V-gutter’s thermal conductivity increases, the flame base moves downstream, and the temperature gradient dT/dx near the flame base decreases, so the flame base is weakened. When the inlet velocity is raised, the flame base moves upstream, and the convection heat loss with inlet mixture increases, so the flame base is weakened.


2020 ◽  
Vol 24 (3 Part B) ◽  
pp. 2077-2088 ◽  
Author(s):  
Weifeng Wu ◽  
Qi Wang ◽  
Zhao Zhang ◽  
Zhijun Wu ◽  
Xiaotian Yang ◽  
...  

The trilateral flash cycle shows a greater potentiality in moderate to low grade heat utilization systems due to its potentiality of obtaining high exergy efficiency, compared to the conventional thermodynamic cycles such as the organic Rankine cycles and the Kalina cycle. The main difference between the trilateral flash cycle and the conventional thermodynamic cycles is that the superheated vapor expansion process is replaced by the two-phase expansion process. The two-phase expansion process actually consists of a flashing of the inlet stream into a vapor and a liquid phase. Most simulations assume an equilibrium model with an instantaneous flashing. Yet, the experiments of pool flashing indicate that there is a flash evaporating rate. The mechanism of this process still remains unclear. In this paper, the flash evaporating rate is introduced into the model of the two-phase expansion process in the reciprocating expander with a cyclone separator. As such, the obtained results reveal the influence of evaporating rate on the efficiency of the two-phase expander.


Author(s):  
Huijuan Chen ◽  
D. Yogi Goswami ◽  
Muhammad M. Rahman ◽  
Elias K. Stefanakos

A supercritical Rankine cycle using zeotropic mixture working fluids for the conversion of low-grade heat into power is proposed and analyzed in this paper. A supercritical Rankine cycle does not go through two-phase region during the heating process. By adopting zeotropic mixtures as the working fluids, the condensation process happens non-isothermally. Both of the features create a potential in reducing the irreversibility and improving the system efficiency. A comparative study between an organic Rankine cycle and the proposed supercritical Rankine cycle shows that the proposed cycle improves the cycle thermal efficiency, exergy efficiency of the heating and the condensation processes, and the system overall efficiency.


Author(s):  
Jacob E. Rivera ◽  
Robert L. Gordon ◽  
Mohsen Talei ◽  
Gilles Bourque

Abstract This paper reports on an optimisation study of the CO turndown behaviour of an axially staged combustor, in the context of industrial gas turbines (GT). The aim of this work is to assess the optimally achievable CO turndown behaviour limit given system and operating characteristics, without considering flow-induced behaviours such as mixing quality and flame spatial characteristics. To that end, chemical reactor network modelling is used to investigate the impact of various system and operating conditions on the exhaust CO emissions of each combustion stage, as well as at the combustor exit. Different combustor residence time combinations are explored to determine their contribution to the exhaust CO emissions. The two-stage combustor modelled in this study consists of a primary (Py) and a secondary (Sy) combustion stage, followed by a discharge nozzle (DN), which distributes the exhaust to the turbines. The Py is modelled using a freely propagating flame (FPF), with the exhaust gas extracted downstream of the flame front at a specific location corresponding to a specified residence time (tr). These exhaust gases are then mixed and combusted with fresh gases in the Sy, modelled by a perfectly stirred reactor (PSR) operating within a set tr. These combined gases then flow into the DN, which is modelled by a plug flow reactor (PFR) that cools the gas to varying combustor exit temperatures within a constrained tr. Together, these form a simplified CRN model of a two-stage, dry-low emissions (DLE) combustion system. Using this CRN model, the impact of the tr distribution between the Py, Sy and DN is explored. A parametric study is conducted to determine how inlet pressure (Pin), inlet temperature (Tin), equivalence ratio (ϕ) and Py-Sy fuel split (FS), individually impact indicative CO turndown behaviour. Their coupling throughout engine load is then investigated using a model combustor, and its effect on CO turndown is explored. Thus, this aims to deduce the fundamental, chemically-driven parameters considered to be most important for identifying the optimal CO turndown of GT combustors. In this work, a parametric study and a model combustor study are presented. The parametric study consists of changing a single parameter at a time, to observe the independent effect of this change and determine its contribution to CO turndown behaviour. The model combustor study uses the same CRN, and varies the parameters simultaneously to mimic their change as an engine moves through its steady-state power curve. The latter study thus elucidates the difference in CO turndown behaviour when all operating conditions are coupled, as they are in practical engines. The results of this study aim to demonstrate the parameters that are key for optimising and improving CO turndown.


Author(s):  
M. Deligant ◽  
S. Braccio ◽  
T. Capurso ◽  
F. Fornarelli ◽  
M. Torresi ◽  
...  

Abstract The Organic Rankine Cycle (ORC) allows the conversion of low-grade heat sources into electricity. Although this technology is not new, the increase in energy demand and the need to reduce CO2 emissions create new opportunities to harvest low grade heat sources such as waste heat. Radial turbines have a simple construction, they are robust and they are not very sensitive to geometry inaccuracies. Most of the radial inflow turbines used for ORC application feature a vaned nozzle ensuring the appropriate distribution angle at the rotor inlet. In this work, no nozzle is considered but only the vaneless gap (distributor). This configuration, without any vaned nozzle, is supposed to be more flexible under varying operating conditions with respect to fixed vanes and to maintain a good efficiency at off-design. This paper presents a performance analysis carried out by means of two approaches: a combination of meanline loss models enhanced with real gas fluid properties and 3D CFD computations, taking into account the entire turbomachine including the scroll housing, the vaneless gap, the turbine wheel and the axial discharge pipe. A detailed analysis of the flow field through the turbomachine is carried out, both under design and off design conditions, with a particular focus on the entropy field in order to evaluate the loss distribution between the scroll housing, the vaneless gap and the turbine wheel.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2674 ◽  
Author(s):  
Yifei Lv ◽  
Jun Lu ◽  
Yongcai Li ◽  
Ling Xie ◽  
Lulu Yang ◽  
...  

The heat source tower (HST), as a cleaner energy production, which can absorb the low-grade energy from ambient air to drive the heat pump unit without emissions has attracted more and more interest. In addition, HST has excellent economic applicability by using cooling tower equipment, which was idle in winter. However, there are few studies on comparative analysis of thermal behavior between counter-flow and cross-flow HST. A mathematical model suitable for both HST types was developed to identify the performance discrepancies between them. Then a parametric study was carried out in order to investigate the impact of solution and air as well as packing material properties on energy transfer of HSTs. Finally, the characteristics of solution dilution and dehumidification were investigated. As the inlet solution temperature increases, increases first, then decreases gradually, but a transition point occurs in the solution at −5 °C. Moreover, the transition section of moisture transfer direction for counter-flow HST was located in the 0.78 m and 0.26–1.56 m of packing material height, under the condition that the air relative humidity was 50%. In summary, this work intuitively indicates the thermal performance difference between counter-flow and cross-flow HST, also could assist the selection of proper operating conditions in HSTs.


2016 ◽  
Vol 856 ◽  
pp. 297-302 ◽  
Author(s):  
Anna Tsynaeva ◽  
Katerina Tsynaeva

Systems of heat consumption of the building with heat pump that uses low-grade heat source are investigated. Effectiveness of heat consumption systems with heat pump is concluded effective for severe climatic conditions prevailing in Russia. Characteristics of heat consumption system with heat pump and the traditional heating system are compared. In this case the heat pump is used the warmth of the environment, that is why considered operating conditions for the autumn and spring. Low inertia of heat systems with heat pump compared to traditional ones during autumn and spring proved.


Author(s):  
S. Goshovskyi ◽  
O. Zurian

The article contains the results of scientific research and design work related to environmentally safe usage of hydropower potential of the small rivers of the Dnieper basin. The innovative design solutions for extraction of low-grade heat energy of water and systems for its transformation into energy convenient for consumption were offered. It was established that use of renewable low-grade energy of soil is widely used in environmentally safe and economically sound power systems. At the same time hydropower potential is not widely used in hydrothermal heat pump systems. It was proved that existing hydrothermal systems are not always adjusted to actual operating conditions and object location. The evidence was provided that the scientific approach to development of appropriate configuration of hydrothermal collector, to methodology of their optimal mounting and to efficiency determination depending on operating conditions is quite topical issue. The scientific novelty of the new process approach is use of special design of water collector that has modular configuration and consists of several functionally related water sondes. The efficiency of hydrothermal system was scientifically proved. The paper describes the results of experimental research of efficiency of hydrothermal heat pump system where the low-grade heat energy of water is used as a renewable primary heating energy source for functioning of the heat pump. The authors have developed experimental hydrothermal and geothermal heat pump systems to conduct the research. Both collector and ground section of the system have mounted sensors of temperature, pressure and coolant flow velocity. The software for archiving and visualization of obtained data was developed. The research procedure was developed. As part of study, observation data were received and performance efficiency of geothermal and hydrothermal systems was calculated. The comparative analysis of energy systems depending on used renewable energy source was carried out. The conclusion was made that use of hydrothermal heat pump systems is environmentally safe. The data obtained as part of study have great scientific and applied significance for engineering of heat pump energy systems using hydropower potential of the small rivers.


Sign in / Sign up

Export Citation Format

Share Document