scholarly journals Long-Term Risk Assessment for Medical Application of Cold Atmospheric Pressure Plasma

Diagnostics ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 210 ◽  
Author(s):  
Rico Rutkowski ◽  
Georg Daeschlein ◽  
Thomas von Woedtke ◽  
Ralf Smeets ◽  
Martin Gosau ◽  
...  

Despite increasing knowledge gained based on multidisciplinary research, plasma medicine still raises various questions regarding specific effects as well as potential risks. With regard to significant statements about in vivo applicability that cannot be prognosticated exclusively based on in vitro data, there is still a deficit of clinical data. This study included a clinical follow-up of five probands who had participated five years previously in a study on the influence of cold atmospheric pressure plasma (CAP) on the wound healing of CO2 laser-induced skin lesions. The follow-up included a complex imaging diagnostic involving dermatoscopy, confocal laser scanning microscopy (CLSM) and hyperspectral imaging (HSI). Hyperspectral analysis showed no relevant microcirculatory differences between plasma-treated and non-plasma-treated areas. In summary of all the findings, no malignant changes, inflammatory reactions or pathological changes in cell architecture could be detected in the plasma-treated areas. These unique in vivo long-term data contribute to a further increase in knowledge about important safety aspects in regenerative plasma medicine. However, to confirm these findings and secure indication-specific dose recommendations, further clinical studies are required.

2013 ◽  
Vol 1 (1) ◽  
pp. 30-35 ◽  
Author(s):  
Hans-Robert Metelmann ◽  
Thi Thom Vu ◽  
Hoang Tung Do ◽  
Thi Nguyen Binh Le ◽  
Thi Ha Anh Hoang ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Thoralf Bernhardt ◽  
Marie Luise Semmler ◽  
Mirijam Schäfer ◽  
Sander Bekeschus ◽  
Steffen Emmert ◽  
...  

The ability to produce cold plasma at atmospheric pressure conditions was the basis for the rapid growth of plasma-related application areas in biomedicine. Plasma comprises a multitude of active components such as charged particles, electric current, UV radiation, and reactive gas species which can act synergistically. Anti-itch, antimicrobial, anti-inflammatory, tissue-stimulating, blood flow-enhancing, and proapoptotic effects were demonstrated in in vivo and in vitro experiments, and until now, no resistance of pathogens against plasma treatment was observed. The combination of the different active agents and their broad range of positive effects on various diseases, especially easily accessible skin diseases, renders plasma quite attractive for applications in medicine. For medical applications, two different types of cold plasma appear suitable: indirect (plasma jet) and direct (dielectric barrier discharge—DBD) plasma sources. The DBD device PlasmaDerm® VU-2010 (CINOGY Technologies GmbH), the atmospheric pressure plasma jet (APPJ) kINPen® MED (INP Greifswald/neoplas tools GmbH), and the SteriPlas (Adtec Ltd., London, United Kingdom) are CE-certified as a medical product to treat chronic wounds in humans and showed efficacy and a good tolerability. Recently, the use of plasma in cancer research and oncology is of particular interest. Plasma has been shown to induce proapoptotic effects more efficiently in tumor cells compared with the benign counterparts, leads to cellular senescence, and—as shown in vivo—reduces skin tumors. To this end, a world-wide first Leibniz professorship for plasmabiotechnology in dermatology has been introduced to establish a scientific network for the investigation of the efficacy and safety of cold atmospheric plasma in dermatooncology. Hence, plasma medicine especially in dermatology holds great promise.


PLoS ONE ◽  
2018 ◽  
Vol 13 (6) ◽  
pp. e0199832 ◽  
Author(s):  
Aline Chiodi Borges ◽  
Gabriela de Morais Gouvêa Lima ◽  
Thalita Mayumi Castaldelli Nishime ◽  
Aline Vidal Lacerda Gontijo ◽  
Konstantin Georgiev Kostov ◽  
...  

Author(s):  
Kenneth A. Cornell ◽  
Amanda White ◽  
Adam Croteau ◽  
Jessica Carlson ◽  
Zeke Kennedy ◽  
...  

2011 ◽  
Vol 109 (12) ◽  
pp. 123302 ◽  
Author(s):  
J. S. Sousa ◽  
K. Niemi ◽  
L. J. Cox ◽  
Q. Th. Algwari ◽  
T. Gans ◽  
...  

2014 ◽  
Vol 11 (11) ◽  
pp. 1010-1017 ◽  
Author(s):  
Seoul Hee Nam ◽  
Hyun Wook Lee ◽  
Jin Woo Hong ◽  
Hae June Lee ◽  
Gyoo Cheon Kim

Sign in / Sign up

Export Citation Format

Share Document