scholarly journals The Effect of Non-Invasive Brain Stimulation (NIBS) on Attention and Memory Function in Stroke Rehabilitation Patients: A Systematic Review and Meta-Analysis

Diagnostics ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 227
Author(s):  
Takatoshi Hara ◽  
Aturan Shanmugalingam ◽  
Amanda McIntyre ◽  
Amer M. Burhan

Background: In recent years, the potential of non-invasive brain stimulation (NIBS) for therapeutic effects on cognitive functions has been explored for populations with stroke. There are various NIBS methods depending on the stimulation site and stimulation parameters. However, there is no systematic NIBS review of post-stroke cognitive impairment with a focus on stimulation sites and stimulation parameters. The purpose of this study is to conduct a systematic review and meta-analysis on effectiveness and safety of NIBS for cognitive impairment after a stroke to obtain new insights. This study was prospectively registered with the PROSPERO database of systematic reviews (CRD42020183298). Methods: All English articles from MEDLINE, Scopus, CINAHL, Embase, PsycINFO, and CENTRAL were searched from inception up to 31 December 2020. Randomized and prospective controlled trials were included for the analysis. Studies with at least five individuals post-stroke, whereby at least five sessions of NIBS were provided and using standardized neuropsychological measurement of cognition, were included. We assessed the methodological quality of selected studies as described in the Physiotherapy Evidence Database (PEDro) scoring system. Results: A total of 10 studies met eligibility criteria. Six studies used repetitive transcranial magnetic stimulation (rTMS) and four studies used transcranial direct current stimulation (tDCS). The pooled sample size was 221 and 196 individuals who received rTMS and tDCS respectively. Eight studies combined general rehabilitation, cognitive training, or additional therapy with NIBS. In rTMS studies, target symptoms included global cognition (n = 4), attention (n = 3), memory (n = 4), working memory (WM) (n = 3), and executive function (n = 2). Five studies selected the left dorsolateral prefrontal cortex (DPLFC) as the stimulation target. One rTMS study selected the right DLPFC as the inhibitory stimulation target. Four of six studies showed significant improvement. In tDCS studies, target symptoms included global cognition (n = 2), attention (n = 4), memory (n = 2) and WM (n = 2). Three studies selected the frontal area as the stimulation target. All studies showed significant improvement. In the meta-analysis, rTMS showed a significant effect on attention, memory, WM and global cognition classified by neuropsychological tests. On the other hand, tDCS had no significant effect. Conclusions: In post-stroke patients with deficits in cognitive function, including attention, memory, and WM, NIBS shows promising positive effects. However, this effect is limited, suggesting that further studies are needed with more precision in stimulation sites and stimulation parameters. Future studies using advanced neurophysiological and neuroimaging tools to allow for a network-based approach to treat cognitive symptoms post-stroke with NIBS are warranted.


Diagnostics ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 627
Author(s):  
Takatoshi Hara ◽  
Aturan Shanmugalingam ◽  
Amanda McIntyre ◽  
Amer M. Burhan

In recent years, the potential of non-invasive brain stimulation (NIBS) for therapeutic effects on cognitive functions has been explored for populations with traumatic brain injury (TBI). However, there is no systematic NIBS review of TBI cognitive impairment with a focus on stimulation sites and stimulation parameters. The purpose of this study was to conduct a systematic review examining the effectiveness and safety of NIBS for cognitive impairment after a TBI. This study was prospectively registered with the PROSPERO database of systematic reviews (CRD42020183298). All English articles from the following databases were searched from inception up to 31 December 2020: Pubmed/MEDLINE, Scopus, CINAHL, Embase, PsycINFO and CENTRAL. Randomized and prospective controlled trials, including cross-over studies, were included for analysis. Studies with at least five individuals with TBI, whereby at least five sessions of NIBS were provided and used standardized neuropsychological measurement of cognition, were included. A total of five studies met eligibility criteria. Two studies used repetitive transcranial magnetic stimulation (rTMS) and three studies used transcranial direct current stimulation (tDCS). The pooled sample size was 44 individuals for rTMS and 91 for tDCS. Three of five studies combined cognitive training or additional therapy (computer assisted) with NIBS. Regarding rTMS, target symptoms included attention (n = 2), memory (n = 1), and executive function (n = 2); only one study showing significant improvement compared than control group with respect to attention. In tDCS studies, target symptoms included cognition (n = 2), attention (n = 3), memory (n = 3), working memory (WM) (n = 3), and executive function (n = 1); two of three studies showed significant improvement compared to the control group with respect to attention and memory. The evidence for NIBS effectiveness in rehabilitation of cognitive function in TBI is still in its infancy, more studies are needed. In all studies, dorsolateral prefrontal cortex (DLPFC) was selected as the stimulation site, along with the stimulation pattern promoting the activation of the left DLPFC. In some studies, there was a significant improvement compared to the control group, but neither rTMS nor tDCS had sufficient evidence of effectiveness. To the establishment of evidence we need the evaluation of brain activity at the stimulation site and related areas using neuroimaging on how NIBS acts on the neural network.



2016 ◽  
Vol 127 (1) ◽  
pp. 956-968 ◽  
Author(s):  
Jessica M. Pisegna ◽  
Asako Kaneoka ◽  
William G. Pearson ◽  
Sandeep Kumar ◽  
Susan E. Langmore


2021 ◽  
Vol 17 (S6) ◽  
Author(s):  
Kritleen Kaur Bawa ◽  
Johannes Teselink ◽  
Grace KY Koo ◽  
Krushnaa Sankhe ◽  
Celina Liu ◽  
...  


BMJ Open ◽  
2017 ◽  
Vol 7 (6) ◽  
pp. e015669 ◽  
Author(s):  
Anthony Terrence O'Brien ◽  
Gabriel Torrealba Acosta ◽  
Rodrigo Huerta ◽  
Aurore Thibaut


2022 ◽  
Vol 23 (2) ◽  
pp. 602
Author(s):  
Ka Young Kim ◽  
Ki Young Shin ◽  
Keun-A Chang

Stroke is a primary debilitating disease in adults, occurring in 15 million individuals each year and causing high mortality and disability rates. The latest estimate revealed that stroke is currently the second leading cause of death worldwide. Post-stroke cognitive impairment (PSCI), one of the major complications after stroke, is frequently underdiagnosed. However, stroke has been reported to increase the risk of cognitive impairment by at least five to eight times. In recent decades, peripheral blood molecular biomarkers for stroke have emerged as diagnostic, prognostic, and therapeutic targets. In this study, we aimed to evaluate some blood-derived proteins for stroke, especially related to brain damage and cognitive impairments, by conducting a systematic review and meta-analysis and discussing the possibility of these proteins as biomarkers for PSCI. Articles published before 26 July 2021 were searched in PubMed, Embase, the Web of Science, and the Cochrane Library to identify all relevant studies reporting blood biomarkers in patients with stroke. Among 1820 articles, 40 were finally identified for this study. We meta-analyzed eight peripheral biomarker candidates: homocysteine (Hcy), high-density lipoprotein cholesterol (HDL-C), C-reactive protein (CRP), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triglyceride (TG), uric acid, and glycated hemoglobin (HbA1c). The Hcy, CRP, TC, and LDL-C levels were significantly higher in patients with PSCI than in the non-PSCI group; however, the HDL-C, TG, uric acid, and HbA1c levels were not different between the two groups. Based on our findings, we suggest the Hcy, CRP, TC, and LDL-C as possible biomarkers in patients with post-stroke cognitive impairment. Thus, certain blood proteins could be suggested as effective biomarkers for PSCI.



2016 ◽  
Vol 9 (5) ◽  
pp. 662-670 ◽  
Author(s):  
Nyeonju Kang ◽  
Jeffery J. Summers ◽  
James H. Cauraugh


Sign in / Sign up

Export Citation Format

Share Document