scholarly journals Identification of Tumor-Specific MRI Biomarkers Using Machine Learning (ML)

Diagnostics ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 742
Author(s):  
Rima Hajjo ◽  
Dima A. Sabbah ◽  
Sanaa K. Bardaweel ◽  
Alexander Tropsha

The identification of reliable and non-invasive oncology biomarkers remains a main priority in healthcare. There are only a few biomarkers that have been approved as diagnostic for cancer. The most frequently used cancer biomarkers are derived from either biological materials or imaging data. Most cancer biomarkers suffer from a lack of high specificity. However, the latest advancements in machine learning (ML) and artificial intelligence (AI) have enabled the identification of highly predictive, disease-specific biomarkers. Such biomarkers can be used to diagnose cancer patients, to predict cancer prognosis, or even to predict treatment efficacy. Herein, we provide a summary of the current status of developing and applying Magnetic resonance imaging (MRI) biomarkers in cancer care. We focus on all aspects of MRI biomarkers, starting from MRI data collection, preprocessing and machine learning methods, and ending with summarizing the types of existing biomarkers and their clinical applications in different cancer types.

2021 ◽  
Vol 108 (Supplement_3) ◽  
Author(s):  
J Bote ◽  
J F Ortega-Morán ◽  
C L Saratxaga ◽  
B Pagador ◽  
A Picón ◽  
...  

Abstract INTRODUCTION New non-invasive technologies for improving early diagnosis of colorectal cancer (CRC) are demanded by clinicians. Optical Coherence Tomography (OCT) provides sub-surface structural information and offers diagnosis capabilities of colon polyps, further improved by machine learning methods. Databases of OCT images are necessary to facilitate algorithms development and testing. MATERIALS AND METHODS A database has been acquired from rat colonic samples with a Thorlabs OCT system with 930nm centre wavelength that provides 1.2KHz A-scan rate, 7μm axial resolution in air, 4μm lateral resolution, 1.7mm imaging depth in air, 6mm x 6mm FOV, and 107dB sensitivity. The colon from anaesthetised animals has been excised and samples have been extracted and preserved for ex-vivo analysis with the OCT equipment. RESULTS This database consists of OCT 3D volumes (C-scans) and 2D images (B-scans) of murine samples from: 1) healthy tissue, for ground-truth comparison (18 samples; 66 C-scans; 17,478 B-scans); 2) hyperplastic polyps, obtained from an induced colorectal hyperplastic murine model (47 samples; 153 C-scans; 42,450 B-scans); 3) neoplastic polyps (adenomatous and adenocarcinomatous), obtained from clinically validated Pirc F344/NTac-Apcam1137 rat model (232 samples; 564 C-scans; 158,557 B-scans); and 4) unknown tissue (polyp adjacent, presumably healthy) (98 samples; 157 C-scans; 42,070 B-scans). CONCLUSIONS A novel extensive ex-vivo OCT database of murine CRC model has been obtained and will be openly published for the research community. It can be used for classification/segmentation machine learning methods, for correlation between OCT features and histopathological structures, and for developing new non-invasive in-situ methods of diagnosis of colorectal cancer.


2020 ◽  
Vol 493 (3) ◽  
pp. 4209-4228 ◽  
Author(s):  
Ting-Yun Cheng ◽  
Christopher J Conselice ◽  
Alfonso Aragón-Salamanca ◽  
Nan Li ◽  
Asa F L Bluck ◽  
...  

ABSTRACT There are several supervised machine learning methods used for the application of automated morphological classification of galaxies; however, there has not yet been a clear comparison of these different methods using imaging data, or an investigation for maximizing their effectiveness. We carry out a comparison between several common machine learning methods for galaxy classification [Convolutional Neural Network (CNN), K-nearest neighbour, logistic regression, Support Vector Machine, Random Forest, and Neural Networks] by using Dark Energy Survey (DES) data combined with visual classifications from the Galaxy Zoo 1 project (GZ1). Our goal is to determine the optimal machine learning methods when using imaging data for galaxy classification. We show that CNN is the most successful method of these ten methods in our study. Using a sample of ∼2800 galaxies with visual classification from GZ1, we reach an accuracy of ∼0.99 for the morphological classification of ellipticals and spirals. The further investigation of the galaxies that have a different ML and visual classification but with high predicted probabilities in our CNN usually reveals the incorrect classification provided by GZ1. We further find the galaxies having a low probability of being either spirals or ellipticals are visually lenticulars (S0), demonstrating that supervised learning is able to rediscover that this class of galaxy is distinct from both ellipticals and spirals. We confirm that ∼2.5 per cent galaxies are misclassified by GZ1 in our study. After correcting these galaxies’ labels, we improve our CNN performance to an average accuracy of over 0.99 (accuracy of 0.994 is our best result).


2020 ◽  
Vol 73 ◽  
pp. S431-S432
Author(s):  
Peter Mesenbrink ◽  
A. Sidney Barritt ◽  
Rohit Loomba ◽  
Philip N Newsome ◽  
Arun Sanyal ◽  
...  

2006 ◽  
Vol 2 ◽  
pp. 117693510600200 ◽  
Author(s):  
Joseph A. Cruz ◽  
David S. Wishart

Machine learning is a branch of artificial intelligence that employs a variety of statistical, probabilistic and optimization techniques that allows computers to “learn” from past examples and to detect hard-to-discern patterns from large, noisy or complex data sets. This capability is particularly well-suited to medical applications, especially those that depend on complex proteomic and genomic measurements. As a result, machine learning is frequently used in cancer diagnosis and detection. More recently machine learning has been applied to cancer prognosis and prediction. This latter approach is particularly interesting as it is part of a growing trend towards personalized, predictive medicine. In assembling this review we conducted a broad survey of the different types of machine learning methods being used, the types of data being integrated and the performance of these methods in cancer prediction and prognosis. A number of trends are noted, including a growing dependence on protein biomarkers and microarray data, a strong bias towards applications in prostate and breast cancer, and a heavy reliance on “older” technologies such artificial neural networks (ANNs) instead of more recently developed or more easily interpretable machine learning methods. A number of published studies also appear to lack an appropriate level of validation or testing. Among the better designed and validated studies it is clear that machine learning methods can be used to substantially (15–25%) improve the accuracy of predicting cancer susceptibility, recurrence and mortality. At a more fundamental level, it is also evident that machine learning is also helping to improve our basic understanding of cancer development and progression.


2020 ◽  
Author(s):  
Sudhakar Tummala ◽  
Niels K. Focke

ABSTRACTRigid and affine registrations to a common template are the essential steps during pre-processing of brain structural magnetic resonance imaging (MRI) data. Manual quality check (QC) of these registrations is quite tedious if the data contains several thousands of images. Therefore, we propose a machine learning (ML) framework for fully automatic QC of these registrations via local computation of the similarity functions such as normalized cross-correlation, normalized mutual-information, and correlation ratio, and using these as features for training of different ML classifiers. To facilitate supervised learning, misaligned images are generated. A structural MRI dataset consisting of 215 subjects from autism brain imaging data exchange is used for 5-fold cross-validation and testing. Few classifiers such as kNN, AdaBoost, and random forest reached testing F1-scores of 0.98 for QC of both rigid and affine registrations. These tested ML models could be deployed for practical use.


2019 ◽  
Author(s):  
Leila Mirsadeghi ◽  
Ali Mohammad Banaei-Moghaddam ◽  
Seyed Reza Beh-Afarin ◽  
Reza Haji Hosseini ◽  
Kaveh Kavousi

Abstract Background: Ensemble methods are supervised learning approaches that integrate different types of data or multiple individual classifiers. It has been shown that these methods can improve professional performance.Methods: This study is an attempt to provide an in-depth review on 45 most relevant articles and aims to introduce 42 ensemble classifier (EC) machine learning methods used for the detection of 18 different types of cancer. Compared to other types of cancer, breast cancer, and the 22 ensemble methods introduced for its identification, is extensively investigated. The purpose of this study is to identify, map, and analyze the current academic discourse on EC machine learning methods in order to: 1. identify overarching themes emerging from empirical studies as regards EC methods, 2. determine their input data and decision-making strategies, and 3. evaluate relevant statistical procedures.Results: By comparing various approaches, we can introduce Relevance Vector Machine (RVM)-based ensemble learning method that can provide optimal solutions for problems such as curse the dimensionality and high-dimensionality of feature space without missing data values.Conclusions: To obtain robust performance and achieve better results, it is tactfully suggested to use multi-omics data integration, which has demonstrated to identify cancers and their subtypes more efficiently.


Sign in / Sign up

Export Citation Format

Share Document