scholarly journals Using Anti-Malondialdehyde Modified Peptide Autoantibodies to Import Machine Learning for Predicting Coronary Artery Stenosis in Taiwanese Patients with Coronary Artery Disease

Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 961
Author(s):  
Yu-Cheng Hsu ◽  
I-Jung Tsai ◽  
Hung Hsu ◽  
Po-Wen Hsu ◽  
Ming-Hui Cheng ◽  
...  

Machine learning (ML) algorithms have been applied to predicting coronary artery disease (CAD). Our purpose was to utilize autoantibody isotypes against four different unmodified and malondialdehyde (MDA)-modified peptides among Taiwanese with CAD and healthy controls (HCs) for CAD prediction. In this study, levels of MDA, MDA-modified protein (MDA-protein) adducts, and autoantibody isotypes against unmodified peptides and MDA-modified peptides were measured with enzyme-linked immunosorbent assay (ELISA). To improve the performance of ML, we used decision tree (DT), random forest (RF), and support vector machine (SVM) coupled with five-fold cross validation and parameters optimization. Levels of plasma MDA and MDA-protein adducts were higher in CAD patients than in HCs. IgM anti-IGKC76–99 MDA and IgM anti-A1AT284–298 MDA decreased the most in patients with CAD compared to HCs. In the experimental results of CAD prediction, the decision tree classifier achieved an area under the curve (AUC) of 0.81; the random forest classifier achieved an AUC of 0.94; the support vector machine achieved an AUC of 0.65 for differentiating between CAD patients with stenosis rates of 70% and HCs. In this study, we demonstrated that autoantibody isotypes imported into machine learning algorithms can lead to accurate models for clinical use.

Author(s):  
Javad Hassannataj Joloudari ◽  
Edris Hassannataj Joloudari ◽  
Hamid Saadatfar ◽  
Mohammad Ghasemigol ◽  
Seyyed Mohammad Razavi ◽  
...  

Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis by selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), the decision tree of C5.0, support vector machine (SVM), the decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.


Author(s):  
Javad Hassannataj Joloudari ◽  
Edris Hassannataj Joloudari ◽  
Hamid Saadatfar ◽  
Mohammad Ghasemigol ◽  
Seyyed Mohammad Razavi ◽  
...  

Heart disease is one of the most common diseases in middle-aged citizens. Among the vast number of heart diseases, coronary artery disease (CAD) is considered as a common cardiovascular disease with a high death rate. The most popular tool for diagnosing CAD is the use of medical imaging, e.g., angiography. However, angiography is known for being costly and also associated with a number of side effects. Hence, the purpose of this study is to increase the accuracy of coronary heart disease diagnosis through selecting significant predictive features in order of their ranking. In this study, we propose an integrated method using machine learning. The machine learning methods of random trees (RTs), decision tree of C5.0, support vector machine (SVM), and decision tree of Chi-squared automatic interaction detection (CHAID) are used in this study. The proposed method shows promising results and the study confirms that the RTs model outperforms other models.


2021 ◽  
Vol 12 (2) ◽  
pp. 28-55
Author(s):  
Fabiano Rodrigues ◽  
Francisco Aparecido Rodrigues ◽  
Thelma Valéria Rocha Rodrigues

Este estudo analisa resultados obtidos com modelos de machine learning para predição do sucesso de startups. Como proxy de sucesso considera-se a perspectiva do investidor, na qual a aquisição da startup ou realização de IPO (Initial Public Offering) são formas de recuperação do investimento. A revisão da literatura aborda startups e veículos de financiamento, estudos anteriores sobre predição do sucesso de startups via modelos de machine learning, e trade-offs entre técnicas de machine learning. Na parte empírica, foi realizada uma pesquisa quantitativa baseada em dados secundários oriundos da plataforma americana Crunchbase, com startups de 171 países. O design de pesquisa estabeleceu como filtro startups fundadas entre junho/2010 e junho/2015, e uma janela de predição entre junho/2015 e junho/2020 para prever o sucesso das startups. A amostra utilizada, após etapa de pré-processamento dos dados, foi de 18.571 startups. Foram utilizados seis modelos de classificação binária para a predição: Regressão Logística, Decision Tree, Random Forest, Extreme Gradiente Boosting, Support Vector Machine e Rede Neural. Ao final, os modelos Random Forest e Extreme Gradient Boosting apresentaram os melhores desempenhos na tarefa de classificação. Este artigo, envolvendo machine learning e startups, contribui para áreas de pesquisa híbridas ao mesclar os campos da Administração e Ciência de Dados. Além disso, contribui para investidores com uma ferramenta de mapeamento inicial de startups na busca de targets com maior probabilidade de sucesso.   


2020 ◽  
Vol 10 (21) ◽  
pp. 7656
Author(s):  
Xueping Chen ◽  
Yi Fu ◽  
Jiangguo Lin ◽  
Yanru Ji ◽  
Ying Fang ◽  
...  

Background: Early accurate detection of coronary artery disease (CAD) is one of the most important medical research areas. Researchers are motivated to utilize machine learning techniques for quick and accurate detection of CAD. Methods: To obtain the high quality of features used for machine learning, we here extracted the coronary bifurcation features from the coronary computed tomography angiography (CCTA) images by using the morphometric method. The machine learning classifier algorithms, such as logistic regression (LR), decision tree (DT), linear discriminant analysis (LDA), k-nearest neighbors (k-NN), artificial neural network (ANN), and support vector machine (SVM) were applied for estimating the performance by using the measured features. Results: The results showed that in comparison with other machine learning methods, the polynomial-SVM with the use of the grid search optimization method had the best performance for the detection of CAD and had yielded the classification accuracy of 100.00%. Among six examined coronary bifurcation features, the exponent of vessel diameter (n) and the area expansion ratio (AER) were two key features in the detection of CAD. Conclusions: This study could aid the clinicians to detect CAD accurately, which may probably provide an alternative method for the non-invasive diagnosis in clinical.


2021 ◽  
Author(s):  
Hemalatha N ◽  
Akhil Wilson ◽  
Akhil Thankachan

Plastic pollution is one of the challenging problems in the environment. But a life without plastic we cannot imagine. This paper deals with the prediction of plastic degrading microbes using Machine Learning. Here we have used Decision Tree, Random Forest, Support vector Machine and K Nearest Neighbor algorithms in order to predict the plastic degrading microbes. Among the four classifiers, Random Forest model gave the best accuracy of 99.1%.


2020 ◽  
Vol 25 (12) ◽  
pp. 3999
Author(s):  
B. I. Geltser ◽  
M. M. Tsivanyuk ◽  
K. I. Shakhgeldyan ◽  
V. Yu. Rublev

Machine learning (ML) are the central tool of artificial intelligence, the use of which makes it possible to automate the processing and analysis of large data, reveal hidden or non-obvious patterns and learn a new knowledge. The review presents an analysis of literature on the use of ML for diagnosing and predicting the clinical course of coronary artery disease. We provided information on reference databases, the use of which allows to develop models and validate them (European ST-T Database, Cleveland Heart Disease database, Multi-Ethnic Study of Atherosclerosis, etc.). The advantages and disadvantages of individual ML methods (logistic regression, support vector machines, decision trees, naive Bayesian classifier, k-nearest neighbors) for the development of diagnostic and predictive algorithms are shown. The most promising ML methods include deep learning, which is implemented using multilayer artificial neural networks. It is assumed that the improvement of ML-based models and their introduction into clinical practice will help support medical decision-making, increase the effectiveness of treatment and optimize health care costs.


2021 ◽  
Vol 8 ◽  
Author(s):  
Chen Wang ◽  
Yue Zhao ◽  
Bingyu Jin ◽  
Xuedong Gan ◽  
Bin Liang ◽  
...  

Early identification of coronary artery disease (CAD) can prevent the progress of CAD and effectually lower the mortality rate, so we intended to construct and validate a machine learning model to predict the risk of CAD based on conventional risk factors and lab test data. There were 3,112 CAD patients and 3,182 controls enrolled from three centers in China. We compared the baseline and clinical characteristics between two groups. Then, Random Forest algorithm was used to construct a model to predict CAD and the model was assessed by receiver operating characteristic (ROC) curve. In the development cohort, the Random Forest model showed a good AUC 0.948 (95%CI: 0.941–0.954) to identify CAD patients from controls, with a sensitivity of 90%, a specificity of 85.4%, a positive predictive value of 0.863 and a negative predictive value of 0.894. Validation of the model also yielded a favorable discriminatory ability with the AUC, sensitivity, specificity, positive predictive value, and negative predictive value of 0.944 (95%CI: 0.934–0.955), 89.5%, 85.8%, 0.868, and 0.886 in the validation cohort 1, respectively, and 0.940 (95%CI: 0.922–0.960), 79.5%, 94.3%, 0.932, and 0.823 in the validation cohort 2, respectively. An easy-to-use tool that combined 15 indexes to assess the CAD risk was constructed and validated using Random Forest algorithm, which showed favorable predictive capability (http://45.32.120.149:3000/randomforest). Our model is extremely valuable for clinical practice, which will be helpful for the management and primary prevention of CAD patients.


Sign in / Sign up

Export Citation Format

Share Document