Kinase Phosphorylation-based Mechanisms of PARP Inhibitor Resistance During Synthetic Lethal Oncotherapy

2020 ◽  
Vol 15 (1) ◽  
pp. 12-23
Author(s):  
Eriko Osaki ◽  
Shinya Mizuno

Background: Poly-(ADP-Ribose) Polymerase (PARP) plays a central role in recovery from single-strand DNA (ssDNA) damage via base excision repair. When PARP activity is inhibited by a NAD+ mimetic analog, ssDNA is converted into a Double-Strand Break (DSB) during the S-phase in a cell cycle. However, the DSB site is repaired in a process of Homologous Recombination (HR) that is derived by genes such as BRCA1/2, PALB2, and RAD51. Under conditions of HR dysfunction, including mutations of BRCA1/2 (called BRCAness), PARP inhibitor (PARPi) induces “synthetic lethality” in BRCAness-specific cancer cells. Indeed, clinical trials using forms of PARPi that include olaparib, veliparib and rucaparib, have revealed that PARP inhibition produces a dramatic effect that actually arrests cancer progression. Its clinical efficiency is limited, however, due to the acquisition of PARPi resistance during long-term use of this inhibitor. Thus, it is important to elucidate the mechanisms of PARPi resistance. Methods: We searched the scientific literature published in PubMed, with a special focus on kinase phosphorylation that is involved in acquiring PARPi resistance. We also summarized the possible molecular events for recovering HR system, a key event for acquiring PARPi resistance. Results: CDK1 is a critical kinase for 5’-3’ DNA end resection, which is important for generating ssDNA for recruiting HR-priming factors. CDK12 is necessary for the transcription of HR-driver genes, such as BRCA1, BRCA2, RAD51 and ATR via the phosphorylation of RNA Pol-II. PLK-1 participates in driving HR via the phosphorylation of RAD51. The PI3K-AKT-mTOR signaling cascade is involved in BRCA1 induction via an ETS1 transcriptional pathway. Even under ATMdeficient conditions, the ATR-CHK1 axis compensates for loss in the DNA damage response, which results in HR recovery. The HGF receptor Met tyrosine kinase is responsible for promoting DNA repair by activating the PARP catalytic domain. Conclusion: These kinase-based signaling pathways are biologically important for understanding the compensatory system of HR, whereas inactivation of these kinases has shown promise for the release of PARPi resistance. Several lines of preclinical studies have demonstrated the potential use of kinase inhibitors to enhance PARPi sensitivity. We emphasize the clinical importance of chemical inhibitors as adjuvant drugs to block critical kinase activities and prevent the possible PARPi resistance.

Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 87 ◽  
Author(s):  
Stergios Boussios ◽  
Peeter Karihtala ◽  
Michele Moschetta ◽  
Afroditi Karathanasi ◽  
Agne Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are the first clinically approved drugs designed to exploit synthetic lethality, and were first introduced as a cancer-targeting strategy in 2005. They have led to a major change in the treatment of advanced ovarian cancer, and altered the natural history of a disease with extreme genetic complexity and defective DNA repair via homologous recombination (HR) pathway. Furthermore, additional mechanisms apart from breast related cancer antigens 1 and 2 (BRCA1/2) mutations can also result in HR pathway alterations and consequently lead to a clinical benefit from PARP inhibitors. Novel combinations of PARP inhibitors with other anticancer therapies are challenging, and better understanding of PARP biology, DNA repair mechanisms, and PARP inhibitor mechanisms of action is crucial. It seems that PARP inhibitor and biologic agent combinations appear well tolerated and clinically effective in both BRCA-mutated and wild-type cancers. They target differing aberrant and exploitable pathways in ovarian cancer, and may induce greater DNA damage and HR deficiency. The input of immunotherapy in ovarian cancer is based on the observation that immunosuppressive microenvironments can affect tumour growth, metastasis, and even treatment resistance. Several biologic agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (VEGF; bevacizumab, cediranib), and PD-1 or PD-L1 (durvalumab, pembrolizumab, nivolumab), anti-CTLA4 monoclonal antibodies (tremelimumab), mTOR-(vistusertib), AKT-(capivasertib), and PI3K inhibitors (buparlisib, alpelisib), as well as MEK 1/2, and WEE1 inhibitors (selumetinib and adavosertib, respectively). Olaparib and veliparib have also been combined with chemotherapy with the rationale of disrupting base excision repair via PARP inhibition. Olaparib has been investigated with carboplatin and paclitaxel, whereas veliparib has been tested additionally in combination with temozolomide vs. pegylated liposomal doxorubicin, as well as with oral cyclophosphamide, and topoisomerase inhibitors. However, overlapping myelosuppression observed with PARP inhibitor and chemotherapy combinations requires further investigation with dose escalation studies. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of such combination strategies.


2017 ◽  
Author(s):  
Stephen J. Pettitt ◽  
Dragomir B. Krastev ◽  
Inger Brandsma ◽  
Amy Drean ◽  
Feifei Song ◽  
...  

AbstractPARP inhibitors (PARPi) target homologous recombination defective tumour cells via synthetic lethality. Genome-wide and high-density CRISPR-Cas9 “tag, mutate and enrich” mutagenesis screens identified single amino acid mutations in PARP1 that cause profound PARPi-resistance. These included PARP1 mutations outside of the DNA interacting regions of the protein, such as mutations in solvent exposed regions of the catalytic domain and clusters of mutations around points of contact between ZnF, WGR and HD domains. These mutations altered PARP1 trapping, as did a mutation found in a clinical case of PARPi resistance. These genetic studies reinforce the importance of trapped PARP1 as a key cytotoxic DNA lesion and suggest that interactions between non-DNA binding domains of PARP1 influence cytotoxicity. Finally, different mechanisms of PARPi resistance (BRCA1 reversion, PARP1, 53BP1, REV7 mutation) had differing effects on chemotherapy sensitivity, suggesting that the underlying mechanism of PARPi resistance likely influences the success of subsequent therapies.


Cancers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2054
Author(s):  
Elizabeth K. Lee ◽  
Ursula A. Matulonis

The use of PARP inhibitors (PARPi) is growing widely as FDA approvals have shifted its use from the recurrence setting to the frontline setting. In parallel, the population developing PARPi resistance is increasing. Here we review the role of PARP, DNA damage repair, and synthetic lethality. We discuss mechanisms of resistance to PARP inhibition and how this informs on novel combinations to re-sensitize cancer cells to PARPi.


2020 ◽  
Vol 21 (21) ◽  
pp. 8288
Author(s):  
Valentina Perini ◽  
Michelle Schacke ◽  
Pablo Liddle ◽  
Salomé Vilchez-Larrea ◽  
Deborah J. Keszenman ◽  
...  

Poly(ADP-ribosyl)polymerase (PARP) synthesizes poly(ADP-ribose) (PAR), which is anchored to proteins. PAR facilitates multiprotein complexes’ assembly. Nuclear PAR affects chromatin’s structure and functions, including transcriptional regulation. In response to stress, particularly genotoxic stress, PARP activation facilitates DNA damage repair. The PARP inhibitor Olaparib (OLA) displays synthetic lethality with mutated homologous recombination proteins (BRCA-1/2), base excision repair proteins (XRCC1, Polβ), and canonical nonhomologous end joining (LigIV). However, the limits of synthetic lethality are not clear. On one hand, it is unknown whether any limiting factor of homologous recombination can be a synthetic PARP lethality partner. On the other hand, some BRCA-mutated patients are not responsive to OLA for still unknown reasons. In an effort to help delineate the boundaries of synthetic lethality, we have induced DNA damage in VERO cells with the radiomimetic chemotherapeutic agent bleomycin (BLEO). A VERO subpopulation was resistant to BLEO, BLEO + OLA, and BLEO + OLA + ATM inhibitor KU55933 + DNA-PK inhibitor KU-0060648 + LigIV inhibitor SCR7 pyrazine. Regarding the mechanism(s) behind the resistance and lack of synthetic lethality, some hypotheses have been discarded and alternative hypotheses are suggested.


Gut ◽  
2020 ◽  
pp. gutjnl-2019-319970 ◽  
Author(s):  
Johann Gout ◽  
Lukas Perkhofer ◽  
Mareen Morawe ◽  
Frank Arnold ◽  
Michaela Ihle ◽  
...  

ObjectiveATM serine/threonine kinase (ATM) is the most frequently mutated DNA damage response gene, involved in homologous recombination (HR), in pancreatic ductal adenocarcinoma (PDAC).DesignCombinational synergy screening was performed to endeavour a genotype-tailored targeted therapy.ResultsSynergy was found on inhibition of PARP, ATR and DNA-PKcs (PAD) leading to synthetic lethality in ATM-deficient murine and human PDAC. Mechanistically, PAD-induced PARP trapping, replication fork stalling and mitosis defects leading to P53-mediated apoptosis. Most importantly, chemical inhibition of ATM sensitises human PDAC cells toward PAD with long-term tumour control in vivo. Finally, we anticipated and elucidated PARP inhibitor resistance within the ATM-null background via whole exome sequencing. Arising cells were aneuploid, underwent epithelial-mesenchymal-transition and acquired multidrug resistance (MDR) due to upregulation of drug transporters and a bypass within the DNA repair machinery. These functional observations were mirrored in copy number variations affecting a region on chromosome 5 comprising several of the upregulated MDR genes. Using these findings, we ultimately propose alternative strategies to overcome the resistance.ConclusionAnalysis of the molecular susceptibilities triggered by ATM deficiency in PDAC allow elaboration of an efficient mutation-specific combinational therapeutic approach that can be also implemented in a genotype-independent manner by ATM inhibition.


2020 ◽  
Vol 13 (645) ◽  
pp. eaba8091 ◽  
Author(s):  
Suhas S. Kharat ◽  
Xia Ding ◽  
Divya Swaminathan ◽  
Akshey Suresh ◽  
Manish Singh ◽  
...  

Synthetic lethality between poly(ADP-ribose) polymerase (PARP) inhibition and BRCA deficiency is exploited to treat breast and ovarian tumors. However, resistance to PARP inhibitors (PARPis) is common. To identify potential resistance mechanisms, we performed a genome-wide RNAi screen in BRCA2-deficient mouse embryonic stem cells and validation in KB2P1.21 mouse mammary tumor cells. We found that resistance to multiple PARPi emerged with reduced expression of TET2 (ten-eleven translocation), which promotes DNA demethylation by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethycytosine (5hmC) and other products. TET2 knockdown in BRCA2-deficient cells protected stalled replication forks (RFs). Increasing 5hmC abundance induced the degradation of stalled RFs in KB2P1.21 and human cancer cells by recruiting the base excision repair–associated apurinic/apyrimidinic endonuclease APE1, independent of the BRCA2 status. TET2 loss did not affect the recruitment of the repair protein RAD51 to sites of double-strand breaks (DSBs) or the abundance of proteins associated with RF integrity. The loss of TET2, of its product 5hmC, and of APE1 recruitment to stalled RFs promoted resistance to the chemotherapeutic cisplatin. Our findings reveal a previously unknown role for the epigenetic mark 5hmC in maintaining the integrity of stalled RFs and a potential resistance mechanism to PARPi and cisplatin.


Cancers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1918 ◽  
Author(s):  
Sanne Venneker ◽  
Alwine B. Kruisselbrink ◽  
Inge H. Briaire-de Bruijn ◽  
Yvonne de Jong ◽  
Andre J. van Wijnen ◽  
...  

Chondrosarcomas are chemo- and radiotherapy resistant and frequently harbor mutations in isocitrate dehydrogenase (IDH1 or IDH2), causing increased levels of D-2-hydroxyglutarate (D-2-HG). DNA repair defects and synthetic lethality with poly(ADP-ribose) polymerase (PARP) inhibition occur in IDH mutant glioma and leukemia models. Here we evaluated DNA repair and PARP inhibition, alone or combined with chemo- or radiotherapy, in chondrosarcoma cell lines with or without endogenous IDH mutations. Chondrosarcoma cell lines treated with the PARP inhibitor talazoparib were examined for dose–response relationships, as well as underlying cell death mechanisms and DNA repair functionality. Talazoparib was combined with chemo- or radiotherapy to evaluate potential synergy. Cell lines treated long term with an inhibitor normalizing D-2-HG levels were investigated for synthetic lethality with talazoparib. We report that talazoparib sensitivity was variable and irrespective of IDH mutation status. All cell lines expressed Ataxia Telangiectasia Mutated (ATM), but a subset was impaired in poly(ADP-ribosyl)ation (PARylation) capacity, homologous recombination, and O-6-methylguanine-DNA methyltransferase (MGMT) expression. Talazoparib synergized with temozolomide or radiation, independent of IDH1 mutant inhibition. This study suggests that talazoparib combined with temozolomide or radiation are promising therapeutic strategies for chondrosarcoma, irrespective of IDH mutation status. A subset of chondrosarcomas may be deficient in nonclassical DNA repair pathways, suggesting that PARP inhibitor sensitivity is multifactorial in chondrosarcoma.


2017 ◽  
Vol 9 (9) ◽  
pp. 579-588 ◽  
Author(s):  
Davide Caruso ◽  
Anselmo Papa ◽  
Silverio Tomao ◽  
Patrizia Vici ◽  
Pierluigi Benedetti Panici ◽  
...  

Ovarian cancer is the first cause of death from gynaecological malignancy. Germline mutation in BRCA1 and 2, two genes involved in the mechanisms of reparation of DNA damage, are showed to be related with the incidence of breast and ovarian cancer, both sporadic and familiar. PARP is a family of enzymes involved in the base excision repair (BER) system. The introduction of inhibitors of PARP in patients with BRCA-mutated ovarian cancer is correlated with the concept of synthetic lethality. Among the PARP inhibitors introduced in clinical practice, niraparib showed interesting results in a phase III trial in the setting of maintenance treatment in ovarian cancer, after platinum-based chemotherapy. Interestingly, was niraparib showed to be efficacious not only in BRCA-mutated patients, but also in patients with other alterations of the homologous recombination (HR) system and in patients with unknown alterations. These results position niraparib as the first PARP-inhibitor with clinically and statistically significant results also in patients with no alterations in BRCA 1/2 and other genes involved in the DNA repair system. Even if the results are potentially practice-changing, the action of niraparib must be further studied and deepened.


2021 ◽  
Author(s):  
Umar Khalid ◽  
Milena Simovic ◽  
Murat Iskar ◽  
John KL Wong ◽  
Rithu Kumar ◽  
...  

ABSTRACTChromothripsis is a form of genomic instability characterized by the occurrence of tens to hundreds of clustered DNA double-strand breaks in a one-off catastrophic event. Rearrangements associated with chromothripsis are detectable in numerous tumor entities and linked with poor prognosis in some of these, such as Sonic Hedgehog medulloblastoma, neuroblastoma and osteosarcoma. Hence, there is a need for therapeutic strategies eliminating tumor cells with chromothripsis. Defects in DNA double-strand break repair, and in particular homologous recombination repair, have been linked with chromothripsis. Targeting DNA repair deficiencies by synthetic lethality approaches, we performed a synergy screen using drug libraries (n = 375 compounds, 15 models) combined with either a PARP inhibitor or cisplatin. This revealed a synergistic interaction between the HDAC inhibitor romidepsin and PARP inhibition. Functional assays, transcriptome analyses, and in vivo validation in patient-derived xenograft mouse models confirmed the efficacy of the combinatorial treatment.


2021 ◽  
Vol 53 (1) ◽  
pp. 42-51
Author(s):  
Dae-Seok Kim ◽  
Cristel V. Camacho ◽  
W. Lee Kraus

AbstractHomologous recombination (HR) repair deficiency impairs the proper maintenance of genomic stability, thus rendering cancer cells vulnerable to loss or inhibition of DNA repair proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1). Inhibitors of nuclear PARPs are effective therapeutics for a number of different types of cancers. Here we review key concepts and current progress on the therapeutic use of PARP inhibitors (PARPi). PARPi selectively induce synthetic lethality in cancer cells with homologous recombination deficiencies (HRDs), the most notable being cancer cells harboring mutations in the BRCA1 and BRCA2 genes. Recent clinical evidence, however, shows that PARPi can be effective as cancer therapeutics regardless of BRCA1/2 or HRD status, suggesting that a broader population of patients might benefit from PARPi therapy. Currently, four PARPi have been approved by the Food and Drug Administration (FDA) for the treatment of advanced ovarian and breast cancer with deleterious BRCA mutations. Although PARPi have been shown to improve progression-free survival, cancer cells inevitably develop resistance, which poses a significant obstacle to the prolonged use of PARP inhibitors. For example, somatic BRCA1/2 reversion mutations are often identified in patients with BRCA1/2-mutated cancers after treatment with platinum-based therapy, causing restoration of HR capacity and thus conferring PARPi resistance. Accordingly, PARPi have been studied in combination with other targeted therapies to overcome PARPi resistance, enhance PARPi efficacy, and sensitize tumors to PARP inhibition. Moreover, multiple clinical trials are now actively underway to evaluate novel combinations of PARPi with other anticancer therapies for the treatment of PARPi-resistant cancer. In this review, we highlight the mechanisms of action of PARP inhibitors with or without BRCA1/2 defects and provide an overview of the ongoing clinical trials of PARPi. We also review the current progress on PARPi-based combination strategies and PARP inhibitor resistance.


Sign in / Sign up

Export Citation Format

Share Document