Advances in the Treatment of Ovarian Cancer Using PARP Inhibitors and the Underlying Mechanism of Resistance

2020 ◽  
Vol 21 (2) ◽  
pp. 167-178 ◽  
Author(s):  
Ling Wang ◽  
Qi Wang ◽  
Yangchun Xu ◽  
Manhua Cui ◽  
Liying Han

The standard treatment for advanced ovarian cancer is cytoreductive surgery followed by cytotoxic chemotherapy. However, it has high risk of recurrence and poor prognosis. Poly(ADPribose) polymerase (PARP) inhibitors selectively target DNA double-strand breaks (DSBs) in tumor cells that cannot be repaired and induce the synthetic lethality of BRCA1/2 mutation cancers. PARP inhibitors are clinically used to treat recurrent ovarian cancer and show significant efficacy in ovarian cancer patients with homologous recombination repair (HRR) pathway defects. PARP inhibitors also have significant clinical benefits in patients without HR defects. With the increasingly extensive clinical application of PARP inhibitors, the possibility of acquiring drug resistance is high. Therefore, clinical strategies should be adopted to manage drug resistance of PARP inhibitors. This study aims to summarize the indications and toxicity of PARP inhibitors, the mechanism of action, targeted treatment of drug resistance, and potential methods to manage drug-resistant diseases. We used the term “ovarian cancer” and the names of each PARP inhibitor as keywords to search articles published in the Medical Subject Headings (MeSH) on Pubmed, along with the keywords “clinicaltrials.gov” and “google.com/patents” as well as “uspto.gov.” The FDA has approved olaparib, niraparib, and rucaparib for the treatment of recurrent epithelial ovarian cancer (EOC). Talazoparib and veliparib are currently in early trials and show promising clinical results. The mechanism underlying resistance to PARP inhibitors and the clinical strategies to overcome them remain unclear. Understanding the mechanism of resistance to PARP inhibitors and their relationship with platinum resistance may help with the development of antiresistance therapies and optimization of the sequence of drug application in the future clinical treatment of ovarian cancer.

Diagnostics ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 87 ◽  
Author(s):  
Stergios Boussios ◽  
Peeter Karihtala ◽  
Michele Moschetta ◽  
Afroditi Karathanasi ◽  
Agne Sadauskaite ◽  
...  

Poly (ADP-ribose) polymerase (PARP) inhibitors are the first clinically approved drugs designed to exploit synthetic lethality, and were first introduced as a cancer-targeting strategy in 2005. They have led to a major change in the treatment of advanced ovarian cancer, and altered the natural history of a disease with extreme genetic complexity and defective DNA repair via homologous recombination (HR) pathway. Furthermore, additional mechanisms apart from breast related cancer antigens 1 and 2 (BRCA1/2) mutations can also result in HR pathway alterations and consequently lead to a clinical benefit from PARP inhibitors. Novel combinations of PARP inhibitors with other anticancer therapies are challenging, and better understanding of PARP biology, DNA repair mechanisms, and PARP inhibitor mechanisms of action is crucial. It seems that PARP inhibitor and biologic agent combinations appear well tolerated and clinically effective in both BRCA-mutated and wild-type cancers. They target differing aberrant and exploitable pathways in ovarian cancer, and may induce greater DNA damage and HR deficiency. The input of immunotherapy in ovarian cancer is based on the observation that immunosuppressive microenvironments can affect tumour growth, metastasis, and even treatment resistance. Several biologic agents have been studied in combination with PARP inhibitors, including inhibitors of vascular endothelial growth factor (VEGF; bevacizumab, cediranib), and PD-1 or PD-L1 (durvalumab, pembrolizumab, nivolumab), anti-CTLA4 monoclonal antibodies (tremelimumab), mTOR-(vistusertib), AKT-(capivasertib), and PI3K inhibitors (buparlisib, alpelisib), as well as MEK 1/2, and WEE1 inhibitors (selumetinib and adavosertib, respectively). Olaparib and veliparib have also been combined with chemotherapy with the rationale of disrupting base excision repair via PARP inhibition. Olaparib has been investigated with carboplatin and paclitaxel, whereas veliparib has been tested additionally in combination with temozolomide vs. pegylated liposomal doxorubicin, as well as with oral cyclophosphamide, and topoisomerase inhibitors. However, overlapping myelosuppression observed with PARP inhibitor and chemotherapy combinations requires further investigation with dose escalation studies. In this review, we discuss multiple clinical trials that are underway examining the antitumor activity of such combination strategies.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Stephen Murata ◽  
Catherine Zhang ◽  
Nathan Finch ◽  
Kevin Zhang ◽  
Loredana Campo ◽  
...  

Poly(ADP-ribose) polymerase (PARP) inhibitors have proven to be successful agents in inducing synthetic lethality in several malignancies. Several PARP inhibitors have reached clinical trial testing for treatment in different cancers, and, recently, Olaparib (AZD2281) has gained both United States Food and Drug Administration (USFDA) and the European Commission (EC) approval for use inBRCA-mutated advanced ovarian cancer treatment. The need to identify biomarkers, their interactions in DNA damage repair pathways, and their potential utility in identifying patients who are candidates for PARP inhibitor treatment is well recognized. In this review, we detail many of the biomarkers that have been investigated for their ability to predict both PARP inhibitor sensitivity and resistance in preclinical studies as well as the results of several clinical trials that have tested the safety and efficacy of different PARP inhibitor agents inBRCAand non-BRCA-mutated cancers.


ESMO Open ◽  
2020 ◽  
Vol 5 (6) ◽  
pp. e001110
Author(s):  
Susana Banerjee ◽  
Antonio Gonzalez-Martin ◽  
Philipp Harter ◽  
Domenica Lorusso ◽  
Kathleen N Moore ◽  
...  

Poly(ADP-ribose) polymerase (PARP) inhibitor maintenance therapy is the latest breakthrough in the management of newly diagnosed advanced ovarian cancer. The results of the SOLO-1 trial in 2018 led to European Medicines Agency and Food and Drug Administration approval of olaparib as first-line maintenance therapy in patients with BRCA1/2 mutation, establishing a new standard of care. Subsequently, the results of three phase III trials (PRIMA, PAOLA-1, VELIA) evaluating the use of first-line PARP inhibitors beyond patients with BRCA1/2 mutations and as combination strategies were presented in 2019, leading to the recent approval of maintenance niraparib irrespective of biomarker status and olaparib in combination with bevacizumab in homologous recombination deficiency-positive-associated advanced ovarian cancer. An ESMO Open - Cancer Horizons round-table expert panel discussed the four phase III trials of first-line PARP inhibitor therapy and how they are changing the clinical management of advanced ovarian cancer.


2017 ◽  
Vol 9 (9) ◽  
pp. 579-588 ◽  
Author(s):  
Davide Caruso ◽  
Anselmo Papa ◽  
Silverio Tomao ◽  
Patrizia Vici ◽  
Pierluigi Benedetti Panici ◽  
...  

Ovarian cancer is the first cause of death from gynaecological malignancy. Germline mutation in BRCA1 and 2, two genes involved in the mechanisms of reparation of DNA damage, are showed to be related with the incidence of breast and ovarian cancer, both sporadic and familiar. PARP is a family of enzymes involved in the base excision repair (BER) system. The introduction of inhibitors of PARP in patients with BRCA-mutated ovarian cancer is correlated with the concept of synthetic lethality. Among the PARP inhibitors introduced in clinical practice, niraparib showed interesting results in a phase III trial in the setting of maintenance treatment in ovarian cancer, after platinum-based chemotherapy. Interestingly, was niraparib showed to be efficacious not only in BRCA-mutated patients, but also in patients with other alterations of the homologous recombination (HR) system and in patients with unknown alterations. These results position niraparib as the first PARP-inhibitor with clinically and statistically significant results also in patients with no alterations in BRCA 1/2 and other genes involved in the DNA repair system. Even if the results are potentially practice-changing, the action of niraparib must be further studied and deepened.


2021 ◽  
Vol 12 (1) ◽  
pp. 82-104
Author(s):  
Sofia Levva ◽  
Aglaia Skolariki ◽  
Eleni Sogka ◽  
Alexandros Bokas ◽  
Avraam Assi ◽  
...  

Abstract The field of ovarian cancer has been revolutionized with the use of poly (ADP-ribose) polymerase (PARP) inhibitors, which present greater inhibition effect in epithelial subtype due to high rates of homologous recombination deficiency. PARP inhibition exploits this cancer pitfall by disrupting DNA repair, leading to genomic instability and apoptosis. Three PARP inhibitors (olaparib, niraparib, and rucaparib) are now approved for use in women with epithelial ovarian cancer, while others are under development. Among women with BRCA1/2 mutations, maintenance PARP therapy has led to a nearly fourfold prolongation of PFS, while those without BRCA1/2 mutations experience an approximately twofold increase in PFS. Differences in trial design, patient selection and primary analysis population affect the conclusions on PARP inhibitors. Limited OS data have been published and there is also limited experience regarding long-term safety. With regard to toxicity profile, there are no differences in serious adverse events between the experimental and control groups. However, combining adverse event data from maintenance phases, a trend towards more events in the experimental group, compared with controls, has been shown. The mechanisms of PARP-inhibitor resistance include restoration of HR through reversion mutations in HR genes, leading to resumed HR function. Other mechanisms that sustain sufficient DNA repair are discussed as well. PARP inhibitors play a pivotal role in the management of ovarian cancer, affecting the future treatment choices. Defining exactly which patients will benefit from them is a challenge and the need for HRD testing to define ‘BRCA-ness’ will add additional costs to treatment.


2009 ◽  
Vol 27 (15_suppl) ◽  
pp. 5500-5500 ◽  
Author(s):  
M. W. Audeh ◽  
R. T. Penson ◽  
M. Friedlander ◽  
B. Powell ◽  
K. M. Bell-McGuinn ◽  
...  

5500 Background: Olaparib (AZD2281; KU-0059436) is a novel, orally active PARP inhibitor that induces synthetic lethality in homozygous BRCA-deficient cells. A phase I trial identified 400 mg bd as the maximum tolerated dose (MTD) with an initial signal of efficacy in BRCA-deficient cancers (ASCO 2008; abst 5510). The primary aim of this study was to test the efficacy of olaparib in confirmed BRCA1/BRCA2 carriers with advanced chemotherapy-refractory ovarian cancer. The secondary aim was to assess the safety and tolerability profile in ovarian cancer patients with BRCA1/2 deficiency. Methods: In an international, multicenter, proof-of-concept, single-arm, phase II study, two patient (pt) sequential cohorts received continuous oral olaparib in 28-day cycles, initially at the MTD, 400 mg bd (33 pts), and subsequently at 100 mg bd (24 pts), a previously shown clinically active and PARP inhibitory dose. Eligibility criteria included confirmed genetic BRCA1/2 mutation and recurrent, measurable, incurable disease (previous chemotherapy, median 3 lines). The primary efficacy endpoint was best objective response rate (ORR; RECIST) post baseline. Change in CA125 was a secondary efficacy endpoint. All adverse events were reported using CTCAE v3. Results: At this interim analysis dated October 31, 2008, of 57 enrolled pts (39 BRCA1 deficient and 18 BRCA2 deficient), 33 were evaluable at 400 mg bd and 24 at 100 mg bd. The confirmed RECIST ORR was 33% at 400 mg bd and 12.5% at 100 mg bd. Clinical benefit rate (ORR and/or confirmed >50% decline in CA125) was 57.6% at 400 mg bd and 16.7% at 100 mg bd. Toxicity was mainly mild in severity, reflecting grade 1/2 nausea (44%); fatigue (35%); and anemia (14%). Grade 3 toxicity occurred infrequently, and comprised primarily nausea (7%) and leukopenia (5%). Conclusions: Oral olaparib is well tolerated and highly active in advanced, chemotherapy-refractory BRCA-deficient ovarian cancer, with greater activity seen at the higher dose. Toxicity in BRCA1/2 carriers was similar to that seen in non-carriers. This study provides positive proof of the concept of the activity and tolerability of genetically defined targeted therapy with olaparib in BRCA-deficient ovarian cancers. [Table: see text]


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. 5513-5513
Author(s):  
Felix Blanc-Durand ◽  
Elisa Yaniz ◽  
Catherine Genestie ◽  
Etienne Rouleau ◽  
Dominique Berton ◽  
...  

5513 Background: Homologous recombination deficiency (HRD), defined as BRCA1/2 mutation ( BRCAmut)or high genomic instability, is currently used to identify patients (pts) with epithelial ovarian cancer (EOC) most likely to benefit from PARP inhibitors. While these genomic tests are useful, they are imperfect: some BRCAm EOC demonstrate primary PARPi resistance and some HR-proficient benefit. Another approach to evaluate HRD is to measure the capacity of tumor cells to recruit nuclear RAD51 foci during S/G2 phase in the presence of double strand DNA damage using multiplexed immunofluorescence (IF) for RAD51, geminin (GMN) and yH2AX. We aimed to describe for the 1st time HRD using this RAD51 functional assay in EOC and correlate RAD51 status to platinum response and BRCAmut. Methods: Tumor samples and clinical data were collected prospectively from pts in the randomized CHIVA trial of neoadjuvant platinum chemotherapy +/- nintedanib. IF for RAD51, GMN, and DAPI was performed on a 3uM slide from FFPE blocks, where feasible, yH2AX was positively scored on a consecutive slide. Tumors were considered RAD51-deficient if < 10% of gem+ tumor cells (TC) had > 5 RAD51+ foci. BRCAmut were identified by NGS. Results: 155 baseline chemotherapy naïve EOC samples were available. All were advanced stage (IIIC/IV), 75% were G3, 7% G2, 2% G1, and 16% grade UK. A contributive RAD51 result was obtained for 90% (139/155) of samples. Contributive NGS results were available for 130 samples. Overall, yH2AX scores were high (median % TC+: 86%, IQR: 56%-100%) confirming the presence of significant basal DNA damage in high grade EOC. Only 8 samples were yH2AX-low, including two of the three G1 tumors. In contrast, 55% (76/155) of samples were considered RAD51-deficient (score < 10%). With regard to outcome, pts with RAD51-deficient tumors had significantly higher overall response rates to neoadjuvant platinum (68% vs 37%, p = 0.04) and significantly longer median progression-free survival (HR 0.50, IC95% 0.25-0.98, p = 0.02). Considering BRCA status, 15% of tumors harbored a deleterious BRCAmut and 67% of these were RAD51-deficient. Importantly among BRCAmut EOC, the RAD51-proficient tumors had significantly poorer response to neoadjuvant chemotherapy (RR = 17% vs 75%, p = 0.02). Conclusions: We evaluated a novel functional assay of HR functionality in advanced EOC. The assay requires minimal tissue and yields contributive results in 90% of cases. Overall, EOC demonstrate high levels of basal DNA damage, yet 55% fail to recruit RAD51 foci during S/G2 cell cycle phase. These RAD51-deficient EOC have improved outcome after neoadjuvant platinum. Conversely, the RAD51 assay also identified a small subset of RAD51-high BRCAmut tumors with poor platinum response. Whether this RAD51 functional assay may also predict PARP inhibitor benefit is currently being investigated.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5756
Author(s):  
Paul DiSilvestro ◽  
Nicoletta Colombo ◽  
Philipp Harter ◽  
Antonio González-Martín ◽  
Isabelle Ray-Coquard ◽  
...  

Recent data have demonstrated substantial efficacy with poly (ADP-ribose) polymerase (PARP) inhibitors as treatment and/or maintenance therapy in patients with newly diagnosed advanced epithelial ovarian cancer (EOC). Here, we review efficacy and safety results from four recent Phase III trials in newly diagnosed EOC: SOLO1 (olaparib), PAOLA-1 (olaparib in combination with bevacizumab), PRIMA (niraparib), and VELIA (veliparib). The implications of these data for current clinical practice and areas for future research are discussed, including ongoing studies of targeted agents in the newly diagnosed setting. Data from SOLO1, PAOLA-1, PRIMA, and VELIA confirm the benefit of PARP inhibitors (olaparib, niraparib, veliparib) for women with newly diagnosed EOC. The greatest benefit was seen in patients with a BRCA1 and/or BRCA2 mutation or in the homologous recombination deficiency (HRD)-test positive subgroup. These four well-conducted studies have generated practice-changing data. However, deciding how to apply these results in clinical practice is challenging, and substantial differences in trial design impede cross-trial comparisons. Recent PARP inhibitor approvals (olaparib, niraparib) in the newly diagnosed EOC setting have provided new maintenance treatment options for a broader patient population. The results of these studies call for personalized medicine based on biomarker profile and other factors, including tolerability, cost considerations, and physician and patient preference. Important areas for future research include appropriate use of both BRCA mutation and HRD testing to inform magnitude of PARP inhibitor benefit as well as exploring further options for patients who are HRD-test negative and for those who become PARP inhibitor resistant.


Author(s):  
Ashish Shah ◽  
Ghanshyam Parmar ◽  
Avinash Kumar Seth

Background: The concept of synthetic lethality is emerging field in the treatment of cancer and can be applied for new drug development of cancer as it has been already represented by Poly (ADP-ribose) polymerase (PARPs) inhibitors. Objectives: In this study we performed virtual screening of 329 flavonoids obtained from Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target (NPACT) database to identify novel PARP inhibitors. Materials and methods: Virtual screening carried out using different In Silico methods which includes molecular docking studies, prediction of druglikeness and In Silico toxicity studies. Results: Fifteen out of 329 flavonoids achieved better docking score as compared to rucaparib which is an FDA approved PARP inhibitor. These 15 hits were again rescored using accurate docking mode and drug-likeliness properties were evaluated. Accuracy of docking method was checked using re-docking. Finally NPACT00183 and NPACT00280 were identified as potential PARP inhibitors with docking score of -139.237 and -129.36 respectively. These two flavonoids were also showed no AMES toxicity and no carcinogenicity which was predicted using admetSAR. Conclusion: Our finding suggests that NPACT00183 and NPACT00280 have promising potential to be further explored as PARP inhibitors.


2021 ◽  
Vol 12 (4) ◽  
Author(s):  
Jing Li ◽  
Ruiqin Wu ◽  
Mingo M. H. Yung ◽  
Jing Sun ◽  
Zhuqing Li ◽  
...  

AbstractThe JAK2/STAT pathway is hyperactivated in many cancers, and such hyperactivation is associated with a poor clinical prognosis and drug resistance. The mechanism regulating JAK2 activity is complex. Although translocation of JAK2 between nucleus and cytoplasm is an important regulatory mechanism, how JAK2 translocation is regulated and what is the physiological function of this translocation remain largely unknown. Here, we found that protease SENP1 directly interacts with and deSUMOylates JAK2, and the deSUMOylation of JAK2 leads to its accumulation at cytoplasm, where JAK2 is activated. Significantly, this novel SENP1/JAK2 axis is activated in platinum-resistant ovarian cancer in a manner dependent on a transcription factor RUNX2 and activated RUNX2/SENP1/JAK2 is critical for platinum-resistance in ovarian cancer. To explore the application of anti-SENP1/JAK2 for treatment of platinum-resistant ovarian cancer, we found SENP1 deficiency or treatment by SENP1 inhibitor Momordin Ic significantly overcomes platinum-resistance of ovarian cancer. Thus, this study not only identifies a novel mechanism regulating JAK2 activity, but also provides with a potential approach to treat platinum-resistant ovarian cancer by targeting SENP1/JAK2 pathway.


Sign in / Sign up

Export Citation Format

Share Document