scholarly journals MHD Free Convection and Entropy Generation in a Corrugated Cavity Filled with a Porous Medium Saturated with Nanofluids

Entropy ◽  
2018 ◽  
Vol 20 (11) ◽  
pp. 846 ◽  
Author(s):  
Ali Chamkha ◽  
Fatih Selimefendigil

MHD free convection inside a triangular-wave-shaped corrugated porous cavity with Cu-water nanofluid is numerically studied with the finite element method. The influences of the Grashof number ( 10 4 ≤ Gr ≤ 10 6 ), Hartmann number ( 0 ≤ Ha ≤ 50 ), Darcy number ( 10 − 4 ≤ Da ≤ 10 − 1 ) and solid volume fraction of the nanoparticle ( 0 ≤ ϕ ≤ 0.05 ) on the convective flow features are examined. It is observed that increasing the Grashof number and Darcy number enhances the heat transfer, while the effect is opposite for the Hartmann number. As the corrugation frequency of the triangular wave increases, the local and averaged heat transfer rates decrease, which is more effective for higher values of Grashof and Darcy numbers. Normalized total entropy generation increases as the Darcy number and solid volume fraction of the nanoparticles increase and decreases as the Hartmann number increases both for flat and corrugated wall configurations.

Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


Author(s):  
Alireza Rahimi ◽  
Aravindhan Surendar ◽  
Aygul Z. Ibatova ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah

Purpose This paper aims to investigate the three-dimensional natural convection and entropy generation in the rectangular cuboid cavities included by chamfered triangular partition made by polypropylene. Design/methodology/approach The enclosure is filled by multi-walled carbon nanotubes (MWCNTs)-H2O nanofluid and air as two immiscible fluids. The finite volume approach is used for computation. The fluid flow and heat transfer are considered with combination of local entropy generation due to fluid friction and heat transfer. Moreover, a numerical method is developed based on three-dimensional solution of Navier–Stokes equations. Findings Effects of side ratio of triangular partitions (SR = 0.5, 1 and 2), Rayleigh number (103 < Ra < 105) and solid volume fraction (f = 0.002, 0.004 and 0.01 Vol.%) of nanofluid are investigated on both natural convection characteristic and volumetric entropy generation. The results show that the partitions can be a suitable method to control fluid flow and energy consumption, and three-dimensional solutions renders more accurate results. Originality/value The originality of this work is to study the three-dimensional natural convection and entropy generation of a stratified system.


2018 ◽  
Vol 15 (5) ◽  
pp. 604-613
Author(s):  
Essma Belahmadi ◽  
Rachid Bessaih

Purpose The purpose of this study is to analyze heat transfer and entropy generation of a Cu-water nanofluid in a vertical channel. The channel walls are maintained at a hot temperature Tw. An up flow penetrates the channel at a uniform velocity v0 and a cold temperature T0 (T0 < Tw). The effects of Reynolds number Re, Grashof number Gr and solid volume fraction ϕ on streamlines, isotherms, entropy generation, friction factor, local and mean Nusselt numbers are evaluated. Design/methodology/approach The Cu-water nanofluid is used in this study. The software Ansys-fluent 14.5, based on the finite-volume method and SIMPLE algorithm, is used to simulate the mixed convection problem with entropy generation in a vertical channel. Findings The results show that the increase of Reynolds and Grashof numbers and solid volume fraction improves heat transfer and reduces entropy generation. Correlations for the mean Nusselt number and friction factor in terms of Reynolds number and solid volume fraction are obtained. The present results are compared with those found in the literature, which reveal a very good agreement. Originality/value The originality of this work is to understand the heat transfer and entropy generation for mixed convection of a Cu-water nanofluid in a vertical channel.


2012 ◽  
Vol 16 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Ehsan Sourtiji ◽  
Seyed Hosseinizadeh

A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame?ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray?leigh numbers. The influence of the magnetic field has been also studied and de?duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.


Author(s):  
M. Muthtamilselvan ◽  
S. Sureshkumar ◽  
Deog Hee Doh

Abstract A two dimensional steady and laminar mixed convection flow in lid-driven porous cavity filled with Cu-water nanofluid is presented in this numerical investigation. The vertical side walls are considered with two spatially varying sinusoidal temperature distributions of different amplitude ratios and phase deviations while the horizontal walls are thermally insulated. The transport equations are solved using finite volume method on a uniformly staggered grid system. The variations of fluid flow, heat transfer, mid-plane velocity, and Nusselt number were discussed over a wide range of Richardson number $(Ri)$ , Darcy number $(Da)$ , porosity $(\epsilon)$ , amplitude ratio $(\epsilon_a)$ , phase deviation $(\phi)$ , and solid volume fraction $(\chi)$ . The results show that the total heat transfer rate increases on increasing Darcy number, amplitude ratio, and solid volume fraction with fixed $Ri$ . For $\phi=\frac{3\pi}{4}$ , the average Nusselt number gets its maximum value when the natural convection dominates. It is found that for $Ri =0.01$ and $1$ , the total heat transfer rate decreases on increasing porosity whereas for $Ri=100$ it is contradictory. It is also observed that the heat transfer is affected mainly on the right side wall where the phase deviation varies from $0$ to $\pi$ . But the effect of $\phi$ is not significant on the left side wall. The sinusoidal temperature distribution along the sidewalls gives better heat transfer rate than the uniform temperature.


Author(s):  
Misarah Abdelaziz ◽  
Wael El-Maghlany ◽  
Ashraf S. Ismail

Natural convection in a square cavity filled with water-Al2 O3 nanofluid is studied numerically. Upper, lower, and left surfaces are insulated. Right wall is at low temperature, while two heat sources are kept at high temperature. The sources are vertically attached to the horizontal walls of a cavity . A uniform magnetic field is applied in a horizontal direction. Effective thermal conductivity and viscosity of nanofluids are obtained using Koo-Kleinstreuer model which implements the Brownian motion of nanoparticles effect. Steady state laminar regime is assumed. The conservation of mass, momentum, and energy equations are solved using finite volume method. The numerical results are reported for the effect of Rayleigh number, solid volume fraction, and Hartmann number on the streamlines as well as the isotherms. In addition, the results for average Nusselt number are presented for various parametric conditions. This study is presented in the following ranges, Rayleigh number from 103 to 105, Hartmann number from 0 to 60, and solid volume fraction from 0 to 0.06, while the Prandtl number which represents water is kept constant at 6.2. The results showed that heat transfer rate decreases with the rise of Hartmann number and increases with the rise of Rayleigh number, and volume fraction. Moreover, results showed that heat sources positions, lengths and intensities have crucial effect on heat transfer rate. Additionally, the effect of nanofluids type was studied, it was found that water-Cu nanofluid enhances the heat transfer better than water-Al2O3, water-CuO and water-TiO2 nanofluids.


2017 ◽  
Vol 377 ◽  
pp. 95-110 ◽  
Author(s):  
Md. Sarwar Alam ◽  
Md. Abdul Hakim Khan ◽  
Oluwole Daniel Makinde

The effects of Cu-nanoparticles on the entropy generation of steady magnetohydrodynamic incompressible flow with viscous dissipation and Joule heating through convergent-divergent channel are analysed in this paper. The basic nonlinear partial differential equations are transformed into a system of coupled ordinary differential equations using suitable transformations which are then solved using power series with Hermite- Padé approximation technique. The velocity profiles, temperature distributions, entropy generation rates, Bejan number as well as the rate of heat transfer at the wall are presented in convergent-divergent channels for various values of nanoparticles solid volume fraction, Eckert number, Reynolds number and channel angle. A stability analysis has been performed for the shear stress which signifies that the lower solution branch is stable and physically realizable, whereas the upper solution branch is unstable. It is interesting to remark that the entropy generation of the system increases at the two walls as well as the heat transfer irreversibility is dominant there whereas the fluid friction irreversibility is dominant along the centreline of the channel.


2017 ◽  
Vol 34 (4) ◽  
pp. 541-549 ◽  
Author(s):  
M. F. Shahri ◽  
F. Sarhaddi

AbstractMagnetohydrodynamic entropy generation of two immiscible fluids inside an inclined channel in the presence of different types of nanoparticles is examined. Channel consists of two regions, one Newtonian clear fluid and another Newtonian nanofluid with water as the base fluid and different nanoparticles including copper (Cu), copper oxide (CuO), aluminum oxide (Al2O3) and titanium dioxide (TiO2). Governing equations are solved with homotopy analysis method to highlight the effect of magnetic parameter, Grashof number, inclination angle and solid volume fraction on the total entropy generation for all types of nanoparticles. Results demonstrate that increasing of Grashof number, inclination angle and solid volume fraction amplifies the total entropy generation, while the enlargement of magnetic parameter reduces it especially for solid volume fractions greater than 15%. Among the several case studies performed, it is seen that water-TiO2 nanofluid is the best nanofluid from the viewpoint of entropy generation minimization. It is also found that the maximum total entropy generation is 1.268 and takes place for water-Cu nanofluid. Moreover, it is observed that the entropy generation component due to heat conduction of water-Cu nanofluid occupies 33.62% of the maximum total entropy generation and consequently that is the main cause of irreversibility in this study.


2018 ◽  
Vol 28 (10) ◽  
pp. 2254-2283 ◽  
Author(s):  
Alireza Rahimi ◽  
Abbas Kasaeipoor ◽  
Emad Hasani Malekshah ◽  
Lioua Kolsi

Purpose This paper aims to perform the lattice Boltzmann simulation of natural convection heat transfer in cavities included with active hot and cold walls at the side walls and internal hot and cold obstacles. Design/methodology/approach The cavity is filled with double wall carbon nanotubes (DWCNTs)-water nanofluid. Different approaches such as local and total entropy generation, local and average Nusselt number and heatline visualization are used to analyze the natural convection heat transfer. The cavity is filled with DWCNTs-water nanofluid and the thermal conductivity and dynamic viscosity are measured experimentally at different solid volume fractions of 0.01 per cent, 0.02 per cent, 0.05 per cent, 0.1 per cent, 0.2 per cent and 0.5 per cent and at a temperature range of 300 to 340 (K). Findings Two sets of correlations for these parameters based on temperature and solid volume fraction are developed and used in the numerical simulations. The influences of different governing parameters such as Rayleigh number, solid volume fraction and different arrangements of active walls on the fluid flow, heat transfer and entropy generation are presented, comprehensively. It is found that the different arrangements of active walls have pronounced influence on the flow structure and heat transfer performance. Furthermore, the Nusselt number has direct relationship with Rayleigh number and solid volume fraction. On the other hand, the total entropy generation has direct and reverse relationship with Rayleigh number and solid volume fraction, respectively. Originality/value The originality of this work is to analyze the two-dimensional natural convection using lattice Boltzmann method and different approaches such as entropy generation and heatline visualization.


2019 ◽  
Vol 23 (6 Part A) ◽  
pp. 3455-3465 ◽  
Author(s):  
Taher Armaghani ◽  
Abbas Kasaeipoor ◽  
Usef Mohammadpoor

This paper studies the effect of a constant magnetic field on the mixed convection heat transfer and the entropy generation of CuO-water nanofluid in an open C-shaped cavity with a numerical method. The governing equations are presented by control volume method and they are solved simultaneously by the SIMPLE algorithm. This study examines the effect of the Hartman number, aspect ratio, Reynolds number, and Richardson number parameters for different solid volume fraction of nanoparticles. Also Nusselt number, entropy generation, thermal performance criteria and coefficient of performance is studied in this research. The calculated parameters are the Hartman number, aspect ratio, Reynolds number, Richardson number, nanofluid solid volume fraction, Nusselt number, and coefficient of performance. The results show that increasing the Hartmann number reduces the entropy generation. However, the thermal performance increases. Increasing the aspect ratio raises heat transfer and thermal performance. The effects of nanofluid solid volume fraction on mixed convection heat transfer and entropy generation are also investigated and discussed.


Sign in / Sign up

Export Citation Format

Share Document