scholarly journals Intermediate-Temperature Creep Deformation and Microstructural Evolution of an Equiatomic FCC-Structured CoCrFeNiMn High-Entropy Alloy

Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 960 ◽  
Author(s):  
Chengming Cao ◽  
Jianxin Fu ◽  
Tongwei Tong ◽  
Yuxiao Hao ◽  
Ping Gu ◽  
...  

The tensile creep behavior of an equiatomic CoCrFeNiMn high-entropy alloy was systematically investigated over an intermediate temperature range (500–600 °C) and applied stress (140–400 MPa). The alloy exhibited a stress-dependent transition from a low-stress region (LSR-region I) to a high-stress region (HSR-region II). The LSR was characterized by a stress exponent of 5 to 6 and an average activation energy of 268 kJ mol−1, whereas the HSR showed much higher corresponding values of 8.9–14 and 380 kJ mol−1. Microstructural examinations on the deformed samples revealed remarkable dynamic recrystallization at higher stress levels. Dislocation jogging and tangling configurations were frequently observed in LSR and HSR at 550 and 600 °C, respectively. Moreover, dynamic precipitates identified as M23C6 or a Cr-rich σ phase were formed along grain boundaries in HSR. The diffusion-compensated strain rate versus modulus-compensated stress data analysis implied that the creep deformation in both stress regions was dominated by stress-assisted dislocation climb controlled by lattice diffusion. Nevertheless, the abnormally high stress exponents in HSR were ascribed to the coordinative contributions of dynamic recrystallization and dynamic precipitation. Simultaneously, the barriers imposed by these precipitates and severe initial deformation were referred to so as to increase the activation energy for creep deformation.

2022 ◽  
Vol 832 ◽  
pp. 142480
Author(s):  
Yueling Guo ◽  
Junyang He ◽  
Zhiming Li ◽  
Lina Jia ◽  
Xiaoxiang Wu ◽  
...  

Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1149
Author(s):  
Irina V. Kireeva ◽  
Yuriy I. Chumlyakov ◽  
Zinaida V. Pobedennaya ◽  
Anna V. Vyrodova ◽  
Anastasia A. Saraeva

The main disadvantage of fcc (face-centred cubic lattice) high-entropy alloys is the low stress level at the yield point (σ0.1) at a test temperature above room temperature. This restricts their practical application at high test temperatures from 773 K to 973 K. In this study, we found that a high stress level was reached at the yield point σ0.1 ≈ G/100–G/160 (G is the shear modulus) of the [001]- and [1¯44]-oriented crystals of the Co23.36Cr23.29Fe23.80Ni21.88Al7.67 (Al0.3CoCrFeNi) high-entropy alloy (HEA) within a wide temperature range of 77–973 K under tension, due to the occurrence, of nanotwins, multipoles, dislocations under plastic deformation at 77 K and the subsequent precipitation of ordered L12 and B2 particles. It was shown that grain boundaries are not formed and the samples remain in a single-crystal state after low-temperature deformation and subsequent ageing at 893 K for 50 h. Achieving a high-strength state in the Al0.3CoCrFeNi HEA single crystals induces the orientation dependence of the critical resolved shear stresses (τcr) at T ≥ 200 K (τcr[1¯44] > τcr[001]), which is absent in the initial single-phase crystals, weakens the temperature dependence of σ0.1 above 573 K, and reduces plasticity to 5–13% in the [1¯44] orientation and 15–20% in the [001] orientation.


2020 ◽  
Vol 30 (7) ◽  
pp. 1884-1894 ◽  
Author(s):  
Jian PENG ◽  
Zi-yong LI ◽  
Xin-bo JI ◽  
Yan-le SUN ◽  
Li-ming FU ◽  
...  

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1015
Author(s):  
Jun Wang ◽  
Chen Wei ◽  
Haoxue Yang ◽  
Tong Guo ◽  
Tingting Xu ◽  
...  

The phase transformation kinetics of a face-centered-cubic (FCC) Al0.25CoCrFeNi high-entropy alloy during isochronal heating is investigated by thermal dilation experiment. The phase transformed volume fraction is determined from the thermal expansion curve, and results show that the phase transition is controlled by diffusion controlled nucleation-growth mechanism. The kinetic parameters, activation energy and kinetic exponent are determined based on Kissinger–Akahira–Sunose (KAS) and Johnson–Mehl–Avrami (JMA) method, respectively. The activation energy and kinetic exponent determined are almost constant, indicating a stable and slow speed of phase transition in the FCC Al0.25CoCrFeNi high-entropy alloy. During the main transformation process, the kinetic exponent shows that the phase transition is diffusion controlled process without nucleation during the transformation.


2015 ◽  
Vol 636 ◽  
pp. 188-195 ◽  
Author(s):  
N.D. Stepanov ◽  
D.G. Shaysultanov ◽  
N.Yu. Yurchenko ◽  
S.V. Zherebtsov ◽  
A.N. Ladygin ◽  
...  

2021 ◽  
pp. 106857
Author(s):  
Ahmad Ostovari Moghaddam ◽  
Marina N. Samodurova ◽  
Kirill Pashkeev ◽  
Maria Doubenskaia ◽  
Alexey Sova ◽  
...  

2020 ◽  
Vol 120 ◽  
pp. 106744 ◽  
Author(s):  
Lijing Lin ◽  
Xin Xian ◽  
Zhihong Zhong ◽  
Chang Chen ◽  
Zhixiong Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document