scholarly journals Discriminative Structure Learning of Bayesian Network Classifiers from Training Dataset and Testing Instance

Entropy ◽  
2019 ◽  
Vol 21 (5) ◽  
pp. 489 ◽  
Author(s):  
Limin Wang ◽  
Yang Liu ◽  
Musa Mammadov ◽  
Minghui Sun ◽  
Sikai Qi

Over recent decades, the rapid growth in data makes ever more urgent the quest for highly scalable Bayesian networks that have better classification performance and expressivity (that is, capacity to respectively describe dependence relationships between attributes in different situations). To reduce the search space of possible attribute orders, k-dependence Bayesian classifier (KDB) simply applies mutual information to sort attributes. This sorting strategy is very efficient but it neglects the conditional dependencies between attributes and is sub-optimal. In this paper, we propose a novel sorting strategy and extend KDB from a single restricted network to unrestricted ensemble networks, i.e., unrestricted Bayesian classifier (UKDB), in terms of Markov blanket analysis and target learning. Target learning is a framework that takes each unlabeled testing instance P as a target and builds a specific Bayesian model Bayesian network classifiers (BNC) P to complement BNC T learned from training data T . UKDB respectively introduced UKDB P and UKDB T to flexibly describe the change in dependence relationships for different testing instances and the robust dependence relationships implicated in training data. They both use UKDB as the base classifier by applying the same learning strategy while modeling different parts of the data space, thus they are complementary in nature. The extensive experimental results on the Wisconsin breast cancer database for case study and other 10 datasets by involving classifiers with different structure complexities, such as Naive Bayes (0-dependence), Tree augmented Naive Bayes (1-dependence) and KDB (arbitrary k-dependence), prove the effectiveness and robustness of the proposed approach.

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 721 ◽  
Author(s):  
YuGuang Long ◽  
LiMin Wang ◽  
MingHui Sun

Due to the simplicity and competitive classification performance of the naive Bayes (NB), researchers have proposed many approaches to improve NB by weakening its attribute independence assumption. Through the theoretical analysis of Kullback–Leibler divergence, the difference between NB and its variations lies in different orders of conditional mutual information represented by these augmenting edges in the tree-shaped network structure. In this paper, we propose to relax the independence assumption by further generalizing tree-augmented naive Bayes (TAN) from 1-dependence Bayesian network classifiers (BNC) to arbitrary k-dependence. Sub-models of TAN that are built to respectively represent specific conditional dependence relationships may “best match” the conditional probability distribution over the training data. Extensive experimental results reveal that the proposed algorithm achieves bias-variance trade-off and substantially better generalization performance than state-of-the-art classifiers such as logistic regression.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 897 ◽  
Author(s):  
Yang Liu ◽  
Limin Wang ◽  
Minghui Sun

The rapid growth in data makes the quest for highly scalable learners a popular one. To achieve the trade-off between structure complexity and classification accuracy, the k-dependence Bayesian classifier (KDB) allows to represent different number of interdependencies for different data sizes. In this paper, we proposed two methods to improve the classification performance of KDB. Firstly, we use the minimal-redundancy-maximal-relevance analysis, which sorts the predictive features to identify redundant ones. Then, we propose an improved discriminative model selection to select an optimal sub-model by removing redundant features and arcs in the Bayesian network. Experimental results on 40 UCI datasets demonstrate that these two techniques are complementary and the proposed algorithm achieves competitive classification performance, and less classification time than other state-of-the-art Bayesian network classifiers like tree-augmented naive Bayes and averaged one-dependence estimators.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Fayroz F. Sherif ◽  
Nourhan Zayed ◽  
Mahmoud Fakhr

Single nucleotide polymorphisms (SNPs) contribute most of the genetic variation to the human genome. SNPs associate with many complex and common diseases like Alzheimer’s disease (AD). Discovering SNP biomarkers at different loci can improve early diagnosis and treatment of these diseases. Bayesian network provides a comprehensible and modular framework for representing interactions between genes or single SNPs. Here, different Bayesian network structure learning algorithms have been applied in whole genome sequencing (WGS) data for detecting the causal AD SNPs and gene-SNP interactions. We focused on polymorphisms in the top ten genes associated with AD and identified by genome-wide association (GWA) studies. New SNP biomarkers were observed to be significantly associated with Alzheimer’s disease. These SNPs are rs7530069, rs113464261, rs114506298, rs73504429, rs7929589, rs76306710, and rs668134. The obtained results demonstrated the effectiveness of using BN for identifying AD causal SNPs with acceptable accuracy. The results guarantee that the SNP set detected by Markov blanket based methods has a strong association with AD disease and achieves better performance than both naïve Bayes and tree augmented naïve Bayes. Minimal augmented Markov blanket reaches accuracy of 66.13% and sensitivity of 88.87% versus 61.58% and 59.43% in naïve Bayes, respectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Subhajit Dey Sarkar ◽  
Saptarsi Goswami ◽  
Aman Agarwal ◽  
Javed Aktar

With the proliferation of unstructured data, text classification or text categorization has found many applications in topic classification, sentiment analysis, authorship identification, spam detection, and so on. There are many classification algorithms available. Naïve Bayes remains one of the oldest and most popular classifiers. On one hand, implementation of naïve Bayes is simple and, on the other hand, this also requires fewer amounts of training data. From the literature review, it is found that naïve Bayes performs poorly compared to other classifiers in text classification. As a result, this makes the naïve Bayes classifier unusable in spite of the simplicity and intuitiveness of the model. In this paper, we propose a two-step feature selection method based on firstly a univariate feature selection and then feature clustering, where we use the univariate feature selection method to reduce the search space and then apply clustering to select relatively independent feature sets. We demonstrate the effectiveness of our method by a thorough evaluation and comparison over 13 datasets. The performance improvement thus achieved makes naïve Bayes comparable or superior to other classifiers. The proposed algorithm is shown to outperform other traditional methods like greedy search based wrapper or CFS.


2017 ◽  
Vol 9 (4) ◽  
pp. 416 ◽  
Author(s):  
Nelly Indriani Widiastuti ◽  
Ednawati Rainarli ◽  
Kania Evita Dewi

Classification is the process of grouping objects that have the same features or characteristics into several classes. The automatic documents classification use words frequency that appears on training data as features. The large number of documents cause the number of words that appears as a feature will increase. Therefore, summaries are chosen to reduce the number of words that used in classification. The classification uses multiclass Support Vector Machine (SVM) method. SVM was considered to have a good reputation in the classification. This research tests the effect of summary as selection features into documents classification. The summaries reduce text into 50%. A result obtained that the summaries did not affect value accuracy of classification of documents that use SVM. But, summaries improve the accuracy of Simple Logistic Classifier. The classification testing shows that the accuracy of Naïve Bayes Multinomial (NBM) better than SVM


2020 ◽  
Vol 17 (1) ◽  
pp. 37-42
Author(s):  
Yuris Alkhalifi ◽  
Ainun Zumarniansyah ◽  
Rian Ardianto ◽  
Nila Hardi ◽  
Annisa Elfina Augustia

Non-Cash Food Assistance or Bantuan Pangan Non-Tunai (BPNT) is food assistance from the government given to the Beneficiary Family (KPM) every month through an electronic account mechanism that is used only to buy food at the Electronic Shop Mutual Assistance Joint Business Group Hope Family Program (e-Warong KUBE PKH ) or food traders working with Bank Himbara. In its distribution, BPNT still has problems that occur that are experienced by the village apparatus especially the apparatus of Desa Wanasari on making decisions, which ones are worthy of receiving (poor) and not worthy of receiving (not poor). So one way that helps in making decisions can be done through the concept of data mining. In this study, a comparison of 2 algorithms will be carried out namely Naive Bayes Classifier and Decision Tree C.45. The total sample used is as much as 200 head of household data which will then be divided into 2 parts into validation techniques is 90% training data and 10% test data of the total sample used then the proposed model is made in the RapidMiner application and then evaluated using the Confusion Matrix table to find out the highest level of accuracy from 2 of these methods. The results in this classification indicate that the level of accuracy in the Naive Bayes Classifier method is 98.89% and the accuracy level in the Decision Tree C.45 method is 95.00%. Then the conclusion that in this study the algorithm with the highest level of accuracy is the Naive Bayes Classifier algorithm method with a difference in the accuracy rate of 3.89%.


Repositor ◽  
2020 ◽  
Vol 2 (5) ◽  
pp. 675
Author(s):  
Muhammad Athaillah ◽  
Yufiz Azhar ◽  
Yuda Munarko

AbstrakKlasifiaksi berita hoaks merupakan salah satu aplikasi kategorisasi teks. Berita hoaks harus diklasifikasikan karena berita hoaks dapat mempengaruhi tindakan dan pola pikir pembaca. Dalam proses klasifikasi pada penelitian ini menggunakan beberapa tahapan yaitu praproses, ekstraksi fitur, seleksi fitur dan klasifikasi. Penelitian ini bertujuan membandingkan dua algoritma yaitu algoritma Naïve Bayes dan Multinomial Naïve Bayes, manakah dari kedua algoritma tersebut yang lebih efektif dalam mengklasifikasikan berita hoaks. Data yang digunakan dalam penelitian ini berasal dari www.trunbackhoax.id untuk data berita hoaks sebanyak 100 artikel dan data berita non-hoaks berasal dari kompas.com, detik.com berjumlah 100 artikel. Data latih berjumlah 140 artikel dan data uji berjumlah 60 artikel. Hasil perbandingan algoritma Naïve Bayes memiliki nilai F1-score sebesar 0,93 dan nilai F1-score Multinomial Naïve Bayes sebesar 0,92. Abstarct Classification hoax news is one of text categorizations applications. Hoax news must be classified because the hoax news can influence the reader actions and thinking patterns. Classification process in this reseacrh uses several stages, namely  preprocessing, features extraxtion, features selection and classification. This research to compare Naïve Bayes algorithm and Multinomial Naïve Bayes algorithm, which of the two algorithms is more effective on classifying hoax news. The data from this research  from  turnbackhoax.id as hoax news of 100 articles and non-hoax news from kompas.com, detik.com of 100 articles. Training data 140 articles dan test data 60 articles. The result of the comparison of algorithms  Naïve Bayes has an F1-score value of 0,93 and Naïve Bayes has an F1-score value of  0,92.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Patricio Wolff ◽  
Manuel Graña ◽  
Sebastián A. Ríos ◽  
Maria Begoña Yarza

Background. Hospital readmission prediction in pediatric hospitals has received little attention. Studies have focused on the readmission frequency analysis stratified by disease and demographic/geographic characteristics but there are no predictive modeling approaches, which may be useful to identify preventable readmissions that constitute a major portion of the cost attributed to readmissions.Objective. To assess the all-cause readmission predictive performance achieved by machine learning techniques in the emergency department of a pediatric hospital in Santiago, Chile.Materials. An all-cause admissions dataset has been collected along six consecutive years in a pediatric hospital in Santiago, Chile. The variables collected are the same used for the determination of the child’s treatment administrative cost.Methods. Retrospective predictive analysis of 30-day readmission was formulated as a binary classification problem. We report classification results achieved with various model building approaches after data curation and preprocessing for correction of class imbalance. We compute repeated cross-validation (RCV) with decreasing number of folders to assess performance and sensitivity to effect of imbalance in the test set and training set size.Results. Increase in recall due to SMOTE class imbalance correction is large and statistically significant. The Naive Bayes (NB) approach achieves the best AUC (0.65); however the shallow multilayer perceptron has the best PPV and f-score (5.6 and 10.2, resp.). The NB and support vector machines (SVM) give comparable results if we consider AUC, PPV, and f-score ranking for all RCV experiments. High recall of deep multilayer perceptron is due to high false positive ratio. There is no detectable effect of the number of folds in the RCV on the predictive performance of the algorithms.Conclusions. We recommend the use of Naive Bayes (NB) with Gaussian distribution model as the most robust modeling approach for pediatric readmission prediction, achieving the best results across all training dataset sizes. The results show that the approach could be applied to detect preventable readmissions.


2018 ◽  
Vol 7 (4.44) ◽  
pp. 131
Author(s):  
Ridwan Rismanto ◽  
Dimas Wahyu Wibowo ◽  
Arie Rachmad Syulistyo

Book is an important medium for teaching in higher education. It is facilitated by a library or a reading room which enabled student and teacher to fulfill their references for teaching and learning activities. For easy searching, each book classified by categories. In our institution, Information Technology Major of State Polytechnic of Malang, those categories are specifics to computer science topics. Every book entry need to be classified accordingly and to perform such task, one need to understand major keywords of the book title to correctly classify the books. The problem is, not all the librarian have such knowledge. Therefore manually classifying hundreds and even thousands of book is an exhausting work. This research is focused on automatic book classification based on its title using Naive Bayes Classifier and Log Probabilistic. The Log Probabilistic implementation is to solve the probability calculation result that is too small that cannot be represented in a computer programming floating points variable type. The algorithm then implemented in a web application using PHP and MySQL database. Evaluation has been done using Holdout method for 240 training dataset and 80 testing dataset resulting in 75% of accuration. We also tested the accuracy using K-fold Cross Validation resulting in 66.25% of accuration.  


Sign in / Sign up

Export Citation Format

Share Document