scholarly journals Implications of Coding Layers on Physical-Layer Security: A Secrecy Benefit Approach

Entropy ◽  
2019 ◽  
Vol 21 (8) ◽  
pp. 755 ◽  
Author(s):  
Harrison ◽  
Beard ◽  
Dye ◽  
Holmes ◽  
Nelson ◽  
...  

In this work, we consider the pros and cons of using various layers of keyless coding toachieve secure and reliable communication over the Gaussian wiretap channel. We define a newapproach to information theoretic security, called practical secrecy and the secrecy benefit, to be usedover real-world channels and finite blocklength instantiations of coding layers, and use this newapproach to show the fundamental reliability and security implications of several coding mechanismsthat have traditionally been used for physical-layer security. We perform a systematic/structuredanalysis of the effect of error-control coding, scrambling, interleaving, and coset coding, as codinglayers of a secrecy system. Using this new approach, scrambling and interleaving are shown to be ofno effect in increasing information theoretic security, even when measuring the effect at the output ofthe eavesdropper’s decoder. Error control coding is shown to present a trade-off between secrecyand reliability that is dictated by the chosen code and the signal-to-noise ratios at the legitimate andeavesdropping receivers. Finally, the benefits of secrecy coding are highlighted, and it is shown howone can shape the secrecy benefit according to system specifications using combinations of differentlayers of coding to achieve both reliable and secure throughput.




2013 ◽  
Vol 30 (5) ◽  
pp. 41-50 ◽  
Author(s):  
Willie K. Harrison ◽  
Joao Almeida ◽  
Mattheiu R. Bloch ◽  
Steven W. McLaughlin ◽  
Joao Barros


2014 ◽  
Vol 33 ◽  
pp. 1460361 ◽  
Author(s):  
Lachlan J. Gunn ◽  
James M. Chappell ◽  
Andrew Allison ◽  
Derek Abbott

While information-theoretic security is often associated with the one-time pad and quantum key distribution, noisy transport media leave room for classical techniques and even covert operation. Transit times across the public internet exhibit a degree of randomness, and cannot be determined noiselessly by an eavesdropper. We demonstrate the use of these measurements for information-theoretically secure communication over the public internet.



Author(s):  
Bahzad Taha Jijo ◽  
Subhi R. M. Zeebaree ◽  
Rizgar R. Zebari ◽  
Mohammed A. M. Sadeeq ◽  
Amira B. Sallow ◽  
...  

Physical layer protection, which protects data confidentiality using information-theoretic methods, has recently attracted a lot of research attention. Using the inherent randomness of the transmission channel to ensure protection in the physical layer is the core concept behind physical layer security. In 5G wireless communication, new challenges have arisen in terms of physical layer security. This paper introduces the most recent survey on various 5G technologies, including millimeter-Wave, massive multi-input multiple outputs, microcells, beamforming, full-duplex technology, etc. The mentioned technologies have been used to solve this technology, such as attenuation, millimeter-Wave penetration, antenna array architecture, security, coverage, scalability, etc. Besides, the author has used descriptions of the techniques/algorithms, goals, problems, and meaningful outcomes, and the results obtained related to this approach were demonstrated.





Author(s):  
Rajesh K. Sharma

This chapter provides a survey of physical layer security and key generation methods. This includes mainly an overview of ongoing research in physical layer security in the present and next generation communication networks. Although higher layer security mechanisms and protocols address wireless security challenges in large extent, more security vulnerabilities arise due to the increasingly pervasive existence of wireless communication devices. In this context, the focus of this chapter is mainly on physical layer security. Some security attacks in general are briefly reviewed. Models of physical layer security, information theoretic works, and key generation methods including quantization and reconciliation are discussed. Some latest developments for enhanced security like Multiple-Input Multiple-Output (MIMO) systems, reconfigurable antennas, and multiple relay systems are also presented. Finally, some existing and emerging application scenarios of physical layer security are discussed.



2021 ◽  
Author(s):  
Saeid Pakravan ◽  
Ghosheh Abed Hodtani

Abstract In this paper, a discrete memoryless wiretap channel with non-causal side information known at the encoder is considered. We (i) characterize capacity region for the Gaussian version of this channel by considering correlation between channel input and side information available at the transmitter; (ii) analyze the impact of correlation on the performance of physical layer security in a Rayleigh fading wiretap channel by deriving closed-form expressions on the average secrecy capacity (ASC) and secrecy outage probability (SOP). Further, to more show the impact of side information, asymptotic behavior of SOP is studied. Numerical evaluation of theoretical results is done finally.



Sign in / Sign up

Export Citation Format

Share Document