scholarly journals On the Use of Entropy Issues to Evaluate and Control the Transients in Some Epidemic Models

Entropy ◽  
2020 ◽  
Vol 22 (5) ◽  
pp. 534 ◽  
Author(s):  
Manuel De la Sen ◽  
Raul Nistal ◽  
Asier Ibeas ◽  
Aitor J. Garrido

This paper studies the representation of a general epidemic model by means of a first-order differential equation with a time-varying log-normal type coefficient. Then the generalization of the first-order differential system to epidemic models with more subpopulations is focused on by introducing the inter-subpopulations dynamics couplings and the control interventions information through the mentioned time-varying coefficient which drives the basic differential equation model. It is considered a relevant tool the control intervention of the infection along its transient to fight more efficiently against a potential initial exploding transmission. The study is based on the fact that the disease-free and endemic equilibrium points and their stability properties depend on the concrete parameterization while they admit a certain design monitoring by the choice of the control and treatment gains and the use of feedback information in the corresponding control interventions. Therefore, special attention is paid to the evolution transients of the infection curve, rather than to the equilibrium points, in terms of the time instants of its first relative maximum towards its previous inflection time instant. Such relevant time instants are evaluated via the calculation of an “ad hoc” Shannon’s entropy. Analytical and numerical examples are included in the study in order to evaluate the study and its conclusions.

2021 ◽  
pp. 1-20
Author(s):  
STEPHEN TAYLOR ◽  
XUESHAN YANG

Abstract The functional partial differential equation (FPDE) for cell division, $$ \begin{align*} &\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t))\\ &\quad = -(b(x,t)+\mu(x,t))n(x,t)+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t), \end{align*} $$ is not amenable to analytical solution techniques, despite being closely related to the first-order partial differential equation (PDE) $$ \begin{align*} \frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t), \end{align*} $$ which, with known $F(x,t)$ , can be solved by the method of characteristics. The difficulty is due to the advanced functional terms $n(\alpha x,t)$ and $n(\beta x,t)$ , where $\beta \ge 2 \ge \alpha \ge 1$ , which arise because cells of size x are created when cells of size $\alpha x$ and $\beta x$ divide. The nonnegative function, $n(x,t)$ , denotes the density of cells at time t with respect to cell size x. The functions $g(x,t)$ , $b(x,t)$ and $\mu (x,t)$ are, respectively, the growth rate, splitting rate and death rate of cells of size x. The total number of cells, $\int _{0}^{\infty }n(x,t)\,dx$ , coincides with the $L^1$ norm of n. The goal of this paper is to find estimates in $L^1$ (and, with some restrictions, $L^p$ for $p>1$ ) for a sequence of approximate solutions to the FPDE that are generated by solving the first-order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper.


Author(s):  
Manuel De la Sen

This paper studies the hyperstability and the asymptotic hyperstability of a single-input single-output controlled dynamic system whose feed-forward input-output dynamics is nonlinear and eventually time-varying consisting of a linear nominal part, a linear incremental perturbed part and a nonlinear and eventually time-varying one. The nominal linear part is described by a positive real transfer function while the linear perturbation is defined by a stable transfer function. The nonlinear and time-varying disturbance is, in general, unstructured but it is upper-bounded by the combination of three additive absolute terms depending on the input, output and input-output product, respectively. The non-linear time-varying feedback controller is any member belonging to a general class which satisfies an integral Popov’s-type inequality. This problem statement allows the study of the conditions guaranteeing the robust stability properties under a variety of the controllers designed for the controlled system and controller disturbances. In this way, set of robust hyperstability and asymptotic hyperstability of the closed-loop system are given based on the fact that the input-output energy of the feed-forward controlled system is positive and bounded for all time and any given initial conditions and controls satisfying Popov’s inequality. The importance of those hyperstability and asymptotic hyperstability properties rely on the fact that they are related to global closed-loop stability, or respectively, global closed-loop asymptotic stability of the same uncontrolled feed-forward dynamics subject to a great number of controllers under the only condition that that they satisfy such a Popov’s-type inequality. It is well-known the relevance of vaccination and treatment controls for Public Health Management at the levels of prevention and healing. Therefore, two application examples concerning the linearization of known epidemic models and their appropriate vaccination and/or treatment controls on the susceptible and infectious, respectively, are discussed in detail with the main objective in mind of being able of achieving a fast convergence of the state- trajectory solutions to the disease- free equilibrium points under a wide class of control laws under deviations of the equilibrium amounts of such populations.


2021 ◽  
Vol 62 ◽  
pp. 469-488
Author(s):  
Stephen William Taylor ◽  
Xueshan Yang

The functional partial differential equation (FPDE) for cell division, \[\frac{\partial}{\partial t}n(x,t)+\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)\] \[+b(\alpha x,t)\alpha n(\alpha x,t)+b(\beta x,t)\beta n(\beta x,t),\] is not amenable to analytical solution techniques, despite being closely related to the first order partial differential equation (PDE) \[\frac{\partial}{\partial t}n(x,t) +\frac{\partial}{\partial x}(g(x,t)n(x,t)) = -(b(x,t)+\mu(x,t))n(x,t)+F(x,t),\] which, with known \(F(x,t)\), can be solved by the method of characteristics. The difficulty is due to the advanced functional terms \(n(\alpha x,t)\) and \(n(\beta x,t)\), where \(\beta \ge 2 \ge\alpha \ge 1\), which arise because cells of size \(x\) are created when cells of size  \(\alpha x\) and \(\beta x\) divide. The nonnegative function, \(n(x,t)\), denotes the density of cells at time \(t\) with respect to cell size \(x\). The functions \(g(x,t)\), \(b(x,t)\) and \(\mu(x,t)\) are, respectively, the growth rate, splitting rate and death rate of cells of size \(x\). The total number of cells, \(\int_{0}^{\infty}n(x,t)dx\), coincides with the \(L^1\) norm of \(n\). The goal of this paper is to find estimates in \(L^1\) (and, with some restrictions, \(L^p\) for \(p>1\)) for a sequence of approximate solutions to the FPDE that are generated by solving the first order PDE. Our goal is to provide a framework for the analysis and computation of such FPDEs, and we give examples of such computations at the end of the paper. doi:10.1017/S1446181121000055


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiaoxia Zhao ◽  
Wei Li ◽  
Yanyang Wang ◽  
Lihong Jiang

In this study, we established a two-dimensional logistic differential equation model to study the number of visits in Chinese PHCIs and hospitals based on the behavior of patients. We determine the model's equilibrium points and analyze their stability and then use China medical services data to fit the unknown parameters of the model. Finally, the sensitivity of model parameters is evaluated to determine the parameters that are susceptible to influence the system. The results indicate that the system corresponds to the zero-equilibrium point, the boundary equilibrium point, and the positive equilibrium point under different parameter conditions. We found that, in order to substantially increase visits to PHCIs, efforts should be made to improve PHCI comprehensive capacity and maximum service capacity.


2021 ◽  
Vol 13 (3) ◽  
pp. 76
Author(s):  
Quintino Francesco Lotito ◽  
Davide Zanella ◽  
Paolo Casari

The pervasiveness of online social networks has reshaped the way people access information. Online social networks make it common for users to inform themselves online and share news among their peers, but also favor the spreading of both reliable and fake news alike. Because fake news may have a profound impact on the society at large, realistically simulating their spreading process helps evaluate the most effective countermeasures to adopt. It is customary to model the spreading of fake news via the same epidemic models used for common diseases; however, these models often miss concepts and dynamics that are peculiar to fake news spreading. In this paper, we fill this gap by enriching typical epidemic models for fake news spreading with network topologies and dynamics that are typical of realistic social networks. Specifically, we introduce agents with the role of influencers and bots in the model and consider the effects of dynamical network access patterns, time-varying engagement, and different degrees of trust in the sources of circulating information. These factors concur with making the simulations more realistic. Among other results, we show that influencers that share fake news help the spreading process reach nodes that would otherwise remain unaffected. Moreover, we emphasize that bots dramatically speed up the spreading process and that time-varying engagement and network access change the effectiveness of fake news spreading.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Yun Xin ◽  
Xiaoxiao Cui ◽  
Jie Liu

Abstract The main purpose of this paper is to obtain an exact expression of the positive periodic solution for a first-order differential equation with attractive and repulsive singularities. Moreover, we prove the existence of at least one positive periodic solution for this equation with an indefinite singularity by applications of topological degree theorem, and give the upper and lower bounds of the positive periodic solution.


Sign in / Sign up

Export Citation Format

Share Document