scholarly journals Nearest Neighbor Decoding and Pilot-Aided Channel Estimation for Fading Channels

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 971
Author(s):  
A. Taufiq Asyhari ◽  
Tobias Koch ◽  
Albert Guillén i Fàbregas

We study the information rates of noncoherent, stationary, Gaussian, and multiple-input multiple-output (MIMO) flat-fading channels that are achievable with nearest neighbor decoding and pilot-aided channel estimation. In particular, we investigate the behavior of these achievable rates in the limit as the signal-to-noise ratio (SNR) tends to infinity by analyzing the capacity pre-log, which is defined as the limiting ratio of the capacity to the logarithm of the SNR as the SNR tends to infinity. We demonstrate that a scheme estimating the channel using pilot symbols and detecting the message using nearest neighbor decoding (while assuming that the channel estimation is perfect) essentially achieves the capacity pre-log of noncoherent multiple-input single-output flat-fading channels, and it essentially achieves the best so far known lower bound on the capacity pre-log of noncoherent MIMO flat-fading channels. Extending the analysis to fading multiple-access channels reveals interesting relationships between the number of antennas and Doppler bandwidth in the comparative performance of joint transmission and time division multiple-access.

2019 ◽  
Vol 8 (3) ◽  
pp. 5831-5836

High information rates inside the restricted frequency (RF) spectrum is often fascinating that results in radios with capabilities on the far side a single-input single-output (SISO) topology. In recent days introduced wireless systems have adopted multiple-input multiple-output (MIMO) topologies that use 2 or more transmitters and 2 or more receivers to send information at the same time over same RF bandwidth. The performance of MIMO system may be improved by involving multiple antennas at transmitter and receiver therefore on offer spatial diversity. during this paper, the performance analysis of MIMO system over AWGN attenuation channel and Rician Channel with ZF receiver is bestowed. The consequences of the antenna choice can even be analyzed from the simulated results. The BER (Bit Error Rate) performance characteristics of ZeroForcing (ZF) receiver is investigated for M-PSK modulation technique over the AWGN channel and Rician Channel.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Soobum Cho ◽  
Sang Kyu Park

Orthogonal frequency division multiple access (OFDMA) is a key multiple access technique for the long term evolution (LTE) downlink. However, high peak-to-average power ratio (PAPR) can cause the degradation of power efficiency. The well-known PAPR reduction technique, dummy sequence insertion (DSI), can be a realistic solution because of its structural simplicity. However, the large usage of subcarriers for the dummy sequences may decrease the transmitted data rate in the DSI scheme. In this paper, a novel DSI scheme is applied to the LTE system. Firstly, we obtain the null subcarriers in single-input single-output (SISO) and multiple-input multiple-output (MIMO) systems, respectively; then, optimized dummy sequences are inserted into the obtained null subcarrier. Simulation results show that Walsh-Hadamard transform (WHT) sequence is the best for the dummy sequence and the ratio of 16 to 20 for the WHT and randomly generated sequences has the maximum PAPR reduction performance. The number of near optimal iteration is derived to prevent exhausted iterations. It is also shown that there is no bit error rate (BER) degradation with the proposed technique in LTE downlink system.


For a level blurring code-division multiple access (CDMA), the numerous entrance framework is done by speech signal, and it shows the real framework by different conditions like comprising of state condition, multiplicative commotion condition , the nonlinear estimation condition, and an ideal separating calculation and these are used for joint recursive channel estimation and multi users separation. It ought to be focused on that the new calculation is pertinent to issues with a similar sort of nonlinear framework which shows that related commotions. Recreations process demonstrates that the new calculation performs are superior to the expanded Kalman channel estimation in faster merging rate and lower in bit mistake rate.


2019 ◽  
Vol 15 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Issa Chihaoui ◽  
Mohamed Lassaad Ammari

In this paper, we propose and analyze a wirelesstransmitter, for multiple-input multiple-output (MIMO) systems,that relies exclusively on energy harvesting. We consider wirelesstransceivers where the transmitter harvests the total requiredenergy from its environment through various sources. We assumethat both transmitter and receiver are equipped with multipleantennas. At the transmitter, a single transmit antenna thatmaximizes the signal-to-noise ratio (SNR) at the receiver isselected for transmission. The remaining antennas are used forenergy harvesting. At the receiver side, maximal-ratio com-bining (MRC) is used. Furthermore, we assume that all theharvested power is used to power the transmitter immediately.The performance of the proposed scheme is analyzed in terms ofoutage probability (OP), symbol error rate (SER) and channelcapacity. The harvested energy comes from random sourcesand is considered as a random variable. Assuming that theharvested power follows a gamma distribution and the MIMOchannel is a Rayleigh flat fading process, we derive a closed-form expressions for the exact cumulative distribution function(CDF) and probability density function (PDF) of the SNR. Basedon this, we analyze the performance of the proposed energyharvesting scheme. The obtained analytical results are validatedby comparing them with the results of Monte-Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document