scholarly journals Pairwise Elastic Net Representation-Based Classification for Hyperspectral Image Classification

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 956
Author(s):  
Hao Li ◽  
Yuanshu Zhang ◽  
Yong Ma ◽  
Xiaoguang Mei ◽  
Shan Zeng ◽  
...  

The representation-based algorithm has raised a great interest in hyperspectral image (HSI) classification. l1-minimization-based sparse representation (SR) attempts to select a few atoms and cannot fully reflect within-class information, while l2-minimization-based collaborative representation (CR) tries to use all of the atoms leading to mixed-class information. Considering the above problems, we propose the pairwise elastic net representation-based classification (PENRC) method. PENRC combines the l1-norm and l2-norm penalties and introduces a new penalty term, including a similar matrix between dictionary atoms. This similar matrix enables the automatic grouping selection of highly correlated data to estimate more robust weight coefficients for better classification performance. To reduce computation cost and further improve classification accuracy, we use part of the atoms as a local adaptive dictionary rather than the entire training atoms. Furthermore, we consider the neighbor information of each pixel and propose a joint pairwise elastic net representation-based classification (J-PENRC) method. Experimental results on chosen hyperspectral data sets confirm that our proposed algorithms outperform the other state-of-the-art algorithms.

2019 ◽  
Vol 11 (13) ◽  
pp. 1557 ◽  
Author(s):  
Yang ◽  
Zhao ◽  
Chan ◽  
Xiao

Super-resolution (SR) is significant for hyperspectral image (HSI) applications. In single-frame HSI SR, how to reconstruct detailed image structures in high resolution (HR) HSI is challenging since there is no auxiliary image (e.g., HR multispectral image) providing structural information. Wavelet could capture image structures in different orientations, and emphasis on predicting high-frequency wavelet sub-bands is helpful for recovering the detailed structures in HSI SR. In this study, we propose a multi-scale wavelet 3D convolutional neural network (MW-3D-CNN) for HSI SR, which predicts the wavelet coefficients of HR HSI rather than directly reconstructing the HR HSI. To exploit the correlation in the spectral and spatial domains, the MW-3D-CNN is built with 3D convolutional layers. An embedding subnet and a predicting subnet constitute the MW-3D-CNN, the embedding subnet extracts deep spatial-spectral features from the low resolution (LR) HSI and represents the LR HSI as a set of feature cubes. The feature cubes are then fed to the predicting subnet. There are multiple output branches in the predicting subnet, each of which corresponds to one wavelet sub-band and predicts the wavelet coefficients of HR HSI. The HR HSI can be obtained by applying inverse wavelet transform to the predicted wavelet coefficients. In the training stage, we propose to train the MW-3D-CNN with L1 norm loss, which is more suitable than the conventional L2 norm loss for penalizing the errors in different wavelet sub-bands. Experiments on both simulated and real spaceborne HSI demonstrate that the proposed algorithm is competitive with other state-of-the-art HSI SR methods.


2021 ◽  
Vol 13 (2) ◽  
pp. 268
Author(s):  
Xiaochen Lv ◽  
Wenhong Wang ◽  
Hongfu Liu

Hyperspectral unmixing is an important technique for analyzing remote sensing images which aims to obtain a collection of endmembers and their corresponding abundances. In recent years, non-negative matrix factorization (NMF) has received extensive attention due to its good adaptability for mixed data with different degrees. The majority of existing NMF-based unmixing methods are developed by incorporating additional constraints into the standard NMF based on the spectral and spatial information of hyperspectral images. However, they neglect to exploit the nature of imbalanced pixels included in the data, which may cause the pixels mixed with imbalanced endmembers to be ignored, and thus the imbalanced endmembers generally cannot be accurately estimated due to the statistical property of NMF. To exploit the information of imbalanced samples in hyperspectral data during the unmixing procedure, in this paper, a cluster-wise weighted NMF (CW-NMF) method for the unmixing of hyperspectral images with imbalanced data is proposed. Specifically, based on the result of clustering conducted on the hyperspectral image, we construct a weight matrix and introduce it into the model of standard NMF. The proposed weight matrix can provide an appropriate weight value to the reconstruction error between each original pixel and the reconstructed pixel in the unmixing procedure. In this way, the adverse effect of imbalanced samples on the statistical accuracy of NMF is expected to be reduced by assigning larger weight values to the pixels concerning imbalanced endmembers and giving smaller weight values to the pixels mixed by majority endmembers. Besides, we extend the proposed CW-NMF by introducing the sparsity constraints of abundance and graph-based regularization, respectively. The experimental results on both synthetic and real hyperspectral data have been reported, and the effectiveness of our proposed methods has been demonstrated by comparing them with several state-of-the-art methods.


2021 ◽  
Vol 13 (3) ◽  
pp. 526
Author(s):  
Shengliang Pu ◽  
Yuanfeng Wu ◽  
Xu Sun ◽  
Xiaotong Sun

The nascent graph representation learning has shown superiority for resolving graph data. Compared to conventional convolutional neural networks, graph-based deep learning has the advantages of illustrating class boundaries and modeling feature relationships. Faced with hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral data into irregular domains from regular grids. In this regard, we present a novel method that performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First, we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral data cubes with unsupervised feature reduction. These feature cubes combined with localized adjacent matrices were fed into the popular graph convolution network in a standard supervised learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets demonstrated that the presented method offers promising classification performance compared with other popular competitors.


2021 ◽  
Vol 13 (4) ◽  
pp. 721
Author(s):  
Zhongheng Li ◽  
Fang He ◽  
Haojie Hu ◽  
Fei Wang ◽  
Weizhong Yu

Collaborative representation-based detector (CRD), as the most representative anomaly detection method, has been widely applied in the field of hyperspectral anomaly detection (HAD). However, the sliding dual window of the original CRD introduces high computational complexity. Moreover, most HAD models only consider a single spectral or spatial feature of the hyperspectral image (HSI), which is unhelpful for improving detection accuracy. To solve these problems, in terms of speed and accuracy, we propose a novel anomaly detection approach, named Random Collective Representation-based Detector with Multiple Feature (RCRDMF). This method includes the following steps. This method first extract the different features include spectral feature, Gabor feature, extended multiattribute profile (EMAP) feature, and extended morphological profile (EMP) feature matrix from the HSI image, which enables us to improve the accuracy of HAD by combining the multiple spectral and spatial features. The ensemble and random collaborative representation detector (ERCRD) method is then applied, which can improve the anomaly detection speed. Finally, an adaptive weight approach is proposed to calculate the weight for each feature. Experimental results on six hyperspectral datasets demonstrate that the proposed approach has the superiority over accuracy and speed.


2021 ◽  
Vol 13 (9) ◽  
pp. 1693
Author(s):  
Anushree Badola ◽  
Santosh K. Panda ◽  
Dar A. Roberts ◽  
Christine F. Waigl ◽  
Uma S. Bhatt ◽  
...  

Alaska has witnessed a significant increase in wildfire events in recent decades that have been linked to drier and warmer summers. Forest fuel maps play a vital role in wildfire management and risk assessment. Freely available multispectral datasets are widely used for land use and land cover mapping, but they have limited utility for fuel mapping due to their coarse spectral resolution. Hyperspectral datasets have a high spectral resolution, ideal for detailed fuel mapping, but they are limited and expensive to acquire. This study simulates hyperspectral data from Sentinel-2 multispectral data using the spectral response function of the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) sensor, and normalized ground spectra of gravel, birch, and spruce. We used the Uniform Pattern Decomposition Method (UPDM) for spectral unmixing, which is a sensor-independent method, where each pixel is expressed as the linear sum of standard reference spectra. The simulated hyperspectral data have spectral characteristics of AVIRIS-NG and the reflectance properties of Sentinel-2 data. We validated the simulated spectra by visually and statistically comparing it with real AVIRIS-NG data. We observed a high correlation between the spectra of tree classes collected from AVIRIS-NG and simulated hyperspectral data. Upon performing species level classification, we achieved a classification accuracy of 89% for the simulated hyperspectral data, which is better than the accuracy of Sentinel-2 data (77.8%). We generated a fuel map from the simulated hyperspectral image using the Random Forest classifier. Our study demonstrated that low-cost and high-quality hyperspectral data can be generated from Sentinel-2 data using UPDM for improved land cover and vegetation mapping in the boreal forest.


2018 ◽  
Vol 4 (12) ◽  
pp. 142 ◽  
Author(s):  
Hongda Shen ◽  
Zhuocheng Jiang ◽  
W. Pan

Hyperspectral imaging (HSI) technology has been used for various remote sensing applications due to its excellent capability of monitoring regions-of-interest over a period of time. However, the large data volume of four-dimensional multitemporal hyperspectral imagery demands massive data compression techniques. While conventional 3D hyperspectral data compression methods exploit only spatial and spectral correlations, we propose a simple yet effective predictive lossless compression algorithm that can achieve significant gains on compression efficiency, by also taking into account temporal correlations inherent in the multitemporal data. We present an information theoretic analysis to estimate potential compression performance gain with varying configurations of context vectors. Extensive simulation results demonstrate the effectiveness of the proposed algorithm. We also provide in-depth discussions on how to construct the context vectors in the prediction model for both multitemporal HSI and conventional 3D HSI data.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2884 ◽  
Author(s):  
Xiaobo Chen ◽  
Cheng Chen ◽  
Yingfeng Cai ◽  
Hai Wang ◽  
Qiaolin Ye

The problem of missing values (MVs) in traffic sensor data analysis is universal in current intelligent transportation systems because of various reasons, such as sensor malfunction, transmission failure, etc. Accurate imputation of MVs is the foundation of subsequent data analysis tasks since most analysis algorithms need complete data as input. In this work, a novel MVs imputation approach termed as kernel sparse representation with elastic net regularization (KSR-EN) is developed for reconstructing MVs to facilitate analysis with traffic sensor data. The idea is to represent each sample as a linear combination of other samples due to inherent spatiotemporal correlation, as well as periodicity of daily traffic flow. To discover few yet correlated samples and make full use of the valuable information, a combination of l1-norm and l2-norm is employed to penalize the combination coefficients. Moreover, the linear representation among samples is extended to nonlinear representation by mapping input data space into high-dimensional feature space, which further enhances the recovery performance of our proposed approach. An efficient iterative algorithm is developed for solving KSR-EN model. The proposed method is verified on both an artificially simulated dataset and a public road network traffic sensor data. The results demonstrate the effectiveness of the proposed approach in terms of MVs imputation.


2016 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Jessica Mitchell ◽  
Nancy Glenn ◽  
Matthew Anderson ◽  
Ryan Hruska

<p class="emsd"><span lang="EN-GB">Unmanned Aerial Systems (UAS)-based hyperspectral remote sensing capabilities developed by the Idaho National Lab and Boise Center Aerospace Lab were tested via demonstration flights that explored the influence of altitude on geometric error, image mosaicking, and dryland vegetation classification. The motivation for this study was to better understand the challenges associated with UAS-based hyperspectral data for distinguishing native grasses such as Sandberg bluegrass (<em>Poa secunda</em>) from invasives such as burr buttercup (<em>Ranunculus testiculatus)</em> in a shrubland environment. The test flights successfully acquired usable flightline data capable of supporting classifiable composite images. Unsupervised classification results support vegetation management objectives that rely on mapping shrub cover and distribution patterns. However, supervised classifications performed poorly despite spectral separability in the image-derived endmember pixels. In many cases, the supervised classifications accentuated noise or features in the mosaic that were artifacts of color balancing and feathering in areas of flightline overlap. Future UAS flight missions that optimize flight planning; minimize illumination differences between flightlines; and leverage ground reference data and time series analysis should be able to effectively distinguish native grasses such as Sandberg bluegrass from burr buttercup. </span></p>


Sign in / Sign up

Export Citation Format

Share Document