scholarly journals Coherent Superpositions of Photon Creation Operations and Their Application to Multimode States of Light

Entropy ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. 999
Author(s):  
Nicola Biagi ◽  
Saverio Francesconi ◽  
Alessandro Zavatta ◽  
Marco Bellini

We present a concise review of recent experimental results concerning the conditional implementation of coherent superpositions of single-photon additions onto distinct field modes. Such a basic operation is seen to give rise to a wealth of interesting and useful effects, from the generation of a tunable degree of entanglement to the birth of peculiar correlations in the photon numbers and the quadratures of multimode, multiphoton, states of light. The experimental investigation of these properties will have an impact both on fundamental studies concerning, for example, the quantumness and entanglement of macroscopic states, and for possible applications in the realm of quantum-enhanced technologies.

2003 ◽  
Vol 3 (2) ◽  
pp. 106-115
Author(s):  
S. Mancini ◽  
P. Tombesi

We consider a bipartite continuous variables quantum mixture coming from phase randomization of a pair-coherent state. We study the nonclassical properties of such a mixture. In particular, we quantify its degree of entanglement, then we show possible violations of Bell's inequalities. We also consider the use of this mixture in quantum teleportation. Finally, we compare this mixture with that obtained from a pair-coherent state by single photon loss.


2011 ◽  
Vol 101-102 ◽  
pp. 909-912
Author(s):  
Guo Ying Zeng ◽  
Deng Feng Zhao

The three-dimensional vibratory strengthening and polishing technology was used to strengthen and polish aeroengine blades with complicated surfaces. At first, the principle of the strengthening and polishing process was introduced, which combined strengthening process with polishing process. Then, the technological parameters influenced on the surface quality were investigated. The principal variables were the media hardness, the frequency and amplitude of the vibration, and duration of the vibratory strengthening and polishing. The optimum parameters were obtained. Experimental results revealed that, after strengthening and polishing, the surface roughness of aeroengine blades was reduced from Ra0.35-0.5μm to Ra0.1-0.12μm, and fatigue strength was increased by approximately 50%.


Author(s):  
G. Mimmi

Abstract In a previous paper the author proposed a method to reduce the periodic variation in flow rate for an external gear pump. To verify the experimental results, a series of experimental tests on a expressly realized gear pump, was carried out. The pump was equipped with relieving grooves milled into the side plates. The tests were done on a closed piping specifically realized and equipped for measuring the instantaneous flow rate of the fluid through a wedge-shaped hot film probe.


Author(s):  
Chuan He ◽  
Tianyu Long ◽  
Mingdao Xin ◽  
Benjamin T. F. Chung

This paper reports an experimental investigation for fluid flow past a circular cylinder with two small rectangular strips and single sharp-edge strips on its surface. The experimental results reflected that different arrangements or dimensions of the strips produced significantly different effects on the flow. The forward step caused a stronger disturbance with a small increase in drag. The backward step arrangement softened the disturbance but reduced the drag coefficient by 33%.


1996 ◽  
Vol 118 (3) ◽  
pp. 740-746 ◽  
Author(s):  
H. B. Ma ◽  
G. P. Peterson

An experimental investigation was conducted and a test facility constructed to measure the capillary heat transport limit in small triangular grooves, similar to those used in micro heat pipes. Using methanol as the working fluid, the maximum heat transport and unit effective area heat transport were experimentally determined for ten grooved plates with varying groove widths, but identical apex angles. The experimental results indicate that there exists an optimum groove configuration, which maximizes the capillary pumping capacity while minimizing the combined effects of the capillary pumping pressure and the liquid viscous pressure losses. When compared with a previously developed analytical model, the experimental results indicate that the model can be used accurately to predict the heat transport capacity and maximum unit area heat transport when given the physical characteristics of the working fluid and the groove geometry, provided the proper heat flux distribution is known. The results of this investigation will assist in the development of micro heat pipes capable of operating at increased power levels with greater reliability.


Author(s):  
F Bakhtar ◽  
K Zidi

The paper describes the results of an experimental investigation of limiting supersaturation in high-pressure steam. It follows an earlier investigation and to avoid the uncertainties associated with leakage past sliding profiles, the test section has been redesigned and the measurements taken with fixed nozzles. Three convergent-divergent nozzles with nominal rates of expansion of 3000, 5000 and 10000 per second have been used and the inlet stagnation pressures cover the range 25–35 bar. The data consist mainly of axial pressure distributions but some droplet measurements have also been recorded.


Energies ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 5011
Author(s):  
Yanpeng Hao ◽  
Yifan Liao ◽  
Zhiqiang Kuang ◽  
Yijie Sun ◽  
Gaofeng Shang ◽  
...  

The discharges of water columns and droplets between the sheds make the leakage distance not effectively used, which is one of the main reasons for flashover of composite post insulators under heavy rainfall. To study the influence of shed parameters on surface rainwater characteristics, artificial rain tests were carried out on the large-diameter composite post insulators under the rainfall intensity of 2–15 mm/min. Lwc (the length of water columns at the edge of large sheds), Nwc (the number of water columns at the edge of large sheds), Nwde (the number of water droplets at the edge of large sheds) and Nwds (the number of water droplets in the space between two adjacent large sheds) were proposed as the parameters of surface rainwater characteristics. The influences of large shed spacing, large shed overhang and rod diameter on the parameters of surface rainwater characteristics under different rainfall intensities were analyzed. The experimental results show that, under the same rainfall intensity, with the rise in large shed spacing, large shed overhang or rod diameter, Lwc, Nwc, Nwde and Nwds all increase. Under different rainfall intensities, the trends of the parameters with the change in shed parameters are basically invariant; however, the change ranges of the parameters are different. The increases in the parameters with the rises in shed parameters and rainfall intensity are mainly attributed to the change in the rainfall on the insulator surface. The experimental results can provide references for the quantitative description of surface rainwater characteristics and the design of large-diameter composite post insulators for DC transmission systems.


Sign in / Sign up

Export Citation Format

Share Document