scholarly journals Climate Finance: Mapping Air Pollution and Finance Market in Time Series

Econometrics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 43
Author(s):  
Zheng Fang ◽  
Jianying Xie ◽  
Ruiming Peng ◽  
Sheng Wang

Climate finance is growing popular in addressing challenges of climate change because it controls the funding and resources to emission entities and promotes green manufacturing. In this study, we determined that PM2.5, PM10, SO2, NO2, CO, and O3 are the target pollutant in the atmosphere and we use a deep neural network to enhance the regression analysis in order to investigate the relationship between air pollution and stock prices of the targeted manufacturer. We also conduct time series analysis based on air pollution and heavy industry manufacturing in China, as the country is facing serious air pollution problems. Our study uses Convolutional-Long Short Term Memory in 2 Dimension (ConvLSTM2D) to extract the features from air pollution and enhance the time series regression in the financial market. The main contribution in our paper is discovering a feature term that impacts the stock price in the financial market, particularly for the companies that are highly impacted by the local environment. We offer a higher accurate model than the traditional time series in the stock price prediction by considering the environmental factor. The experimental results suggest that there is a negative linear relationship between air pollution and the stock market, which demonstrates that air pollution has a negative effect on the financial market. It promotes the manufacturer’s improving their emission recycling and encourages them to invest in green manufacture—otherwise, the drop in stock price will impact the company funding process.

2020 ◽  
Vol 218 ◽  
pp. 01026
Author(s):  
Qihang Ma

The prediction of stock prices has always been a hot topic of research. However, the autoregressive integrated moving average (ARIMA) model commonly used and artificial neural networks (ANN) still have their own advantages and disadvantages. The use of long short-term memory (LSTM) networks model for prediction also shows interesting possibilities. This article compares three models specifically through the analysis of the principles of the three models and the prediction results. In the end, it is believed that the LSTM model may have the best predictive ability, but it is greatly affected by the data processing. The ANN model performs better than that of the ARIMA model. The combination of time series and external factors may be a worthy research direction.


2021 ◽  
Author(s):  
Jaydip Sen ◽  
Sidra Mehtab ◽  
Abhishek Dutta

Prediction of stock prices has been an important area of research for a long time. While supporters of the <i>efficient market hypothesis</i> believe that it is impossible to predict stock prices accurately, there are formal propositions demonstrating that accurate modeling and designing of appropriate variables may lead to models using which stock prices and stock price movement patterns can be very accurately predicted. Researchers have also worked on technical analysis of stocks with a goal of identifying patterns in the stock price movements using advanced data mining techniques. In this work, we propose an approach of hybrid modeling for stock price prediction building different machine learning and deep learning-based models. For the purpose of our study, we have used NIFTY 50 index values of the National Stock Exchange (NSE) of India, during the period December 29, 2014 till July 31, 2020. We have built eight regression models using the training data that consisted of NIFTY 50 index records from December 29, 2014 till December 28, 2018. Using these regression models, we predicted the <i>open</i> values of NIFTY 50 for the period December 31, 2018 till July 31, 2020. We, then, augment the predictive power of our forecasting framework by building four deep learning-based regression models using long-and short-term memory (LSTM) networks with a novel approach of walk-forward validation. Using the grid-searching technique, the hyperparameters of the LSTM models are optimized so that it is ensured that validation losses stabilize with the increasing number of epochs, and the convergence of the validation accuracy is achieved. We exploit the power of LSTM regression models in forecasting the future NIFTY 50 <i>open</i> values using four different models that differ in their architecture and in the structure of their input data. Extensive results are presented on various metrics for all the regression models. The results clearly indicate that the LSTM-based univariate model that uses one-week prior data as input for predicting the next week's <i>open</i> value of the NIFTY 50 time series is the most accurate model.


2021 ◽  
Author(s):  
Armin Lawi ◽  
Hendra Mesra ◽  
Supri Amir

Abstract Stocks are an attractive investment option since they can generate large profits compared to other businesses. The movement of stock price patterns on the stock market is very dynamic; thus it requires accurate data modeling to forecast stock prices with a low error rate. Forecasting models using Deep Learning are believed to be able to accurately predict stock price movements using time-series data, especially the Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) algorithms. However, several previous implementation studies have not been able to obtain convincing accuracy results. This paper proposes the implementation of the forecasting method by classifying the movement of time-series data on company stock prices into three groups using LSTM and GRU. The accuracy of the built model is evaluated using loss functions of Rooted Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE). The results showed that the performance evaluation of both architectures is accurate in which GRU is always superior to LSTM. The highest validation for GRU was 98.73% (RMSE) and 98.54% (MAPE), while the LSTM validation was 98.26% (RMSE) and 97.71% (MAPE).


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wei Zhang ◽  
Ke-xin Tao ◽  
Jun-feng Li ◽  
Yan-chun Zhu ◽  
Jing Li

The interactive information in blockchain architecture establishes an effective communication channel between users and enterprises, enabling them to communicate in a comprehensive and effective manner. Therefore, taking blockchain interactive information as the research object, this paper explores how the intervention of official information on investors affects the stock price movement and then makes predictions on stock prices according to the emotional tendency of interactive information. With the contextual information fusion, a sentiment computing model based on a convolutional neural network is established to extract and quantify the emotional features of blockchain interactive information. Combined with investors’ emotional features, the stock price prediction model based on long short-term memory is proposed. The experiment results show that the accuracy of the model has been improved by incorporating the intervened emotional features, thereby proving that information clarification can have a positive effect on the stock price.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yang Yujun ◽  
Yang Yimei ◽  
Xiao Jianhua

The stock market is a chaotic, complex, and dynamic financial market. The prediction of future stock prices is a concern and controversial research issue for researchers. More and more analysis and prediction methods are proposed by researchers. We proposed a hybrid method for the prediction of future stock prices using LSTM and ensemble EMD in this paper. We use comprehensive EMD to decompose the complex original stock price time series into several subsequences which are smoother, more regular and stable than the original time series. Then, we use the LSTM method to train and predict each subsequence. Finally, we obtained the prediction values of the original stock price time series by fused the prediction values of several subsequences. In the experiment, we selected five data to fully test the performance of the method. The comparison results with the other four prediction methods show that the predicted values show higher accuracy. The hybrid prediction method we proposed is effective and accurate in future stock price prediction. Hence, the hybrid prediction method has practical application and reference value.


2019 ◽  
Vol 61 ◽  
pp. 01006 ◽  
Author(s):  
Jakub Horák ◽  
Tomáš Krulický

Accurate stock price prediction is very difficult in today's economy. Accurate prediction plays an important role in helping investors improve return on equity. As a result, a number of new approaches and technologies have logically evolved in recent years to predict stock prices. One is also the method of artificial neural networks, which have many advantages over conventional methods. The aim of this paper is to compare a method of exponential time series alignment and time series alignment using artificial neural networks as tools for predicting future stock price developments on the example of the company Unipetrol. Time series alignment is performed using artificial neural networks, exponential alignment of time series, and then a comparison of time series of predictions of future stock price trends predicted using the most successful neural network and price prediction calculated by exponential time series alignment is performed. Predictions for 62 business days were obtained. The realistic picture of further possible development is surprisingly given based on the exponential alignment of time series.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Sarah Dong ◽  
Amber Wang

Predicting stock prices has been both challenging and controversial. Since it first spread through the United States, the COVID-19 pandemic has impacted the stock market in a multitude of ways. Thus, stock price prediction has become even more challenging. Recurrent neural networks (RNN) have been widely used in many fields to predict financial time series. In this study, Long Short-Term Memory (LSTM), a special form of RNN, is used to predict the stock market direction for the US airline industry by using NYSE Arca Airline Index (XAL). The LSTM model was optimized through changing different hyperparameters of the model architecture to find the best combination for increased accuracy and performance evaluated by several metrics, including raw RMSE (3.51) and MAPA (4.6%), and very high MAPA (95.4%) and R^2 (0.978).


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Wenjie Lu ◽  
Jiazheng Li ◽  
Yifan Li ◽  
Aijun Sun ◽  
Jingyang Wang

Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.


2021 ◽  
Vol 11 (9) ◽  
pp. 3984
Author(s):  
Xinpeng Yu ◽  
Dagang Li

Stock performance prediction plays an important role in determining the appropriate timing of buying or selling a stock in the development of a trading system. However, precise stock price prediction is challenging because of the complexity of the internal structure of the stock price system and the diversity of external factors. Although research on forecasting stock prices has been conducted continuously, there are few examples of the successful use of stock price forecasting models to develop effective trading systems. Inspired by the process of human stock traders looking for trading opportunities, we propose a deep learning framework based on a hybrid convolutional recurrent neural network (HCRNN) to predict the important trading points (IPs) that are more likely to be followed by a significant stock price rise to capture potential high-margin opportunities. In the HCRNN model, the convolutional neural network (CNN) performs convolution on the most recent region to capture local fluctuation features, and the long short-term memory (LSTM) approach learns the long-term temporal dependencies to improve stock performance prediction. Comprehensive experiments on real stock market data prove the effectiveness of our proposed framework. Our proposed method ITPP-HCRNN achieves an annualized return that is 278.46% more than that of the market.


Author(s):  
Sai Manoj Cheruvu

Abstract: Predicting Stock price of a company has been a challenge for analysts due to the fluctuations and its changing nature with respect to time. This paper attempts to predict the stock prices using Time series technique that proposes to observe various changes in a given variable with respect to time and is appropriate for making predictions in financial sector [1] as the stock prices are time variant. Keywords: Stock prices, Analysis, Fluctuations, Prediction, Time series, Time variant


Sign in / Sign up

Export Citation Format

Share Document