scholarly journals Batteryless Electronic System Printed on Glass Substrate

2021 ◽  
Vol 2 (4) ◽  
pp. 527-535
Author(s):  
Peter Andersson Andersson Ersman ◽  
Jessica Åhlin ◽  
David Westerberg ◽  
Anurak Sawatdee ◽  
Patrik Arvén ◽  
...  

Batteryless hybrid printed electronic systems manufactured on glass substrates are reported. The electronic system contains a sensor capable of detecting water, an electrochromic display, conductors, a silicon chip providing the power supply through energy harvesting of electromagnetic radiation, and a silicon-based microcontroller responsible for monitoring the sensor status and the subsequent update of the corresponding display segment. The silicon-based components were assembled on the glass substrate by using a pick and place equipment, while the remainder of the system was manufactured by screen printing. Many printed electronic components, often relying on organic materials, are sensitive to variations in environmental conditions, and the reported system paves the way for the creation of electronic sensor platforms on glass substrates for utilization in see-through applications in harsh conditions. Additionally, this generic hybrid printed electronic sensor system also demonstrates the ability to enable autonomous operation through energy harvesting in future smart window applications.

2013 ◽  
Vol 753 ◽  
pp. 505-509
Author(s):  
Yuichi Sato ◽  
Toshifumi Suzuki ◽  
Hiroyuki Mogami ◽  
Fumito Otake ◽  
Hirotoshi Hatori ◽  
...  

Solid phase growth of thin films of copper (Cu), aluminum (Al) and zinc oxide (ZnO) on single crystalline sapphire and quartz glass substrates were tried by heat-treatments and their crystallization conditions were investigated. ZnO thin films relatively easily recrystallized even when they were deposited on the amorphous quartz glass substrate. On the other hand, Cu and Al thin films hardly recrystallized when they were deposited on the quartz glass substrate. The metal thin films could be recrystallized at only extremely narrow windows of the heat-treatment conditions when they were deposited on the single crystalline sapphire substrate. The window of the solid phase heteroepitaxial growth condition of the Al film was wider than that of the Cu film.


2013 ◽  
Vol 646 ◽  
pp. 106-110
Author(s):  
Da Hyeok Lee ◽  
Se Geun Park ◽  
Myoung Soo Kim ◽  
Young Hwan Cha ◽  
Beom Hoan O ◽  
...  

This paper describes a simple metal pattern transfer method on glass substrates. Ag metal films were transferred by the conformal contact method at 150°C, which did not require higher pressure than the conventional nano-imprinting method. The important factors affecting quality of transferred metal patterns on glass were the usage of anti-sticking layer on mold surface, thickness of transferred metal films and temperature during contact printing step. Various Ag patterns were transferred onto glass substrate.


2020 ◽  
Vol 21 (1) ◽  
pp. 8
Author(s):  
Emy Mulyani ◽  
Tjipto Sujitno ◽  
Dessy Purbandari ◽  
Ferdiansjah Ferdiansjah ◽  
Sayono Sayono

This paper presents the research on the growth of ZnS:Ag:Cu thin film on a glass substrate as a radio-luminescent material. The SRIM/TRIM software is used to determine the optimum thickness based on an energy deposition depth of 5.485 MeV Am 241 alpha radiation source on ZnS:Ag:Cu material. To increase the adhesive strength of the coating, initially, the glass substrate is etched using a plasma glow discharged at 280°C for 15 minutes. Multiple coatings of ZnS:Ag:Cu were  etched on the glass substrate; this was carried out using a thermal evaporation technique to achieve the optimal thickness (based on SRIM/TRIM simulation). The thin film thickness was observed using a scanning electron microscope (SEM). The optical properties of the un-etched, etched glass substrate and thin-film were characterized using UV-Vis spectrometer. Based on SRIM/TRIM simulation, the optimal thickness is 22 mm which can be achieved by coating three times. From optical properties of ZnS:Ag:Cu thin film and after being analysed using Taue plot method, it is found that the energy gap of ZnS:Ag:Cu thin film is 2.48 eV. It can be concluded that the addition of Ag and Cu doped decrease the energy gap of ZnS (3.66 eV).


2015 ◽  
Vol 24 (3) ◽  
pp. 035016 ◽  
Author(s):  
Robert Brooke ◽  
Manrico Fabretto ◽  
Nastasja Vucaj ◽  
Kamil Zuber ◽  
Eliza Switalska ◽  
...  

Author(s):  
Chan Yang Jeong ◽  
Takashi Kubota ◽  
Kazuki Tajima ◽  
Masakazu Kitamura ◽  
Hideaki Imai

Polymer Korea ◽  
2021 ◽  
Vol 45 (6) ◽  
pp. 934-939
Author(s):  
Mira Shin ◽  
Youngeun Lee ◽  
Jinkyung Kim ◽  
Gun Woo Sim ◽  
Youngho Eom ◽  
...  

Author(s):  
Mihail O. Cernaianu ◽  
Aurel Gontean

The authors propose in this chapter an original, self-sustainable, power supply system for wireless monitoring applications that is powered from an energy harvesting device based on thermoelectric generators (TEGs). The energy harvesting system's purpose is to gather the waste heat from low temperature sources (<90°C), convert it to electrical energy and store it into rechargeable batteries. The energy harvesting system must be able to power a so-called condition monitoring system (CMS) that is used for the monitoring of heat dissipation equipment. The setup used for measurements (including mechanical details) and the experiments are described along with all the essential results of the research. The electronic system design is emphasized and various options are discussed.


1999 ◽  
pp. 355-361 ◽  
Author(s):  
O. Kluth ◽  
B. Rech ◽  
L. Houben ◽  
S. Wieder ◽  
G. Schöpe ◽  
...  

2019 ◽  
Vol 2019 (1) ◽  
pp. 000152-000156 ◽  
Author(s):  
Roman Ostholt ◽  
Rafael Santos ◽  
Norbert Ambrosius ◽  
Daniel Dunker ◽  
Jean-Pol Delrue

Abstract The objective of this paper is to demonstrate the feasibility of glass mounting substrates made by Laser Induced Deept Etching (LIDE) technology, which include newly developed passive die alignment structures. The aim of these structures is to compensate for potential die misalignments and die shift issues which become severe when moving to panel level fan-out packaging. The passive alignment structures are located at two adjacent edges of the rectangular cavity and are created in the same process step as the open cavities. The filigree spring-like alignment structures benefit from being processed in a crack- and stress-free manner. Although the spring elements have a minimal dimension of less than 100 μm, these structures show an outstanding break strength while deformed when active dies are placed in the mounting cavity. Depending on the design, the spring elements can have a stroke of several tenths of micrometer which enable the compensation of rather large die displacements. Here, we present examples for LIDE-processed mounting glass substrates with the described features. The performance of the proposed design and method was evaluated with a die accuracy study. Test dies with alignment marks were placed in the cavities and measured relatively to alignments marks on the mounting glass substrate. The Fan-Out packaging concept based on the research shown here combines several advantages: due to the relatively high Young's modulus of the glass, the reconstituted wafer shows less warpage than in the state-of-art; while the passive alignment structures reduce the die shift to a minimum (depending on dicing accuracies and through package vias for package-on-package or antenna-in-package application), and can be readily integrated.


Sign in / Sign up

Export Citation Format

Share Document