scholarly journals A Nonlinear Integral Backstepping Controller to Regulate the Voltage and Frequency of an Islanded Microgrid Inverter

Electronics ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 660
Author(s):  
Aamer Abbas Shah ◽  
Xueshan Han ◽  
Hammad Armghan ◽  
Aftab Ahmed Almani

The islanded operation mode of a microgrid system is usually affected by the system uncertainties, such as the load, source, and parameter variations. In such systems, the voltage and frequency must be regulated to maintain the power quality during islanded operation. As an approach to control the voltage and frequency, in this study, a decentralized nonlinear integral backstepping controller for the voltage source inverter used in an islanded microgrid is developed. First, the dynamical model of the inverter-based distribution generations (DGs) in microgrid system is developed. Subsequently, the model-based controller for the microgrid is built using dynamics of inverter-based DGs and Lyapunov theory, which could eliminate the voltage and frequency deviations in the system under different uncertainties. To ensure the system stability, a control Lyapunov function is adopted. Considering the influence of irradiations and other meteorological variables fluctuations a battery energy storage (BESS) is applied on the DC side to suppress the fluctuations of output power of DGs. Furthermore, the efficiency of the designed controller was validated through simulations in the MATLAB/Simulink environment under different scenarios and effectiveness of the proposed framework is further validated by real-time hardware in loop (HIL) experiments. In addition, the performance of the proposed controller is compared with a conventional backstepping (BS) controller. The comparison results demonstrate that the efficiency of the designed controller in terms of obtaining steady-state operating conditions is better than that of the BS controller.

2021 ◽  
Author(s):  
Mengfan Zhang ◽  
xiongfei wang ◽  
Qianwen Xu

The black-box impedance of the voltage source converters (VSCs) can be directly identified at the converter terminal without access to its internal control details, which greatly facilitates the converter-grid interactions. However, since the limited impedance data amount in practical industrial applications, the existing impedance identification methods cannot accurately capture characteristics of the impedance model at various operating scenarios, which is the indicators of the VSCs system stability at the changing profiles of renewables and loads. In this paper, a transfer learning based impedance identification is proposed to fill this research gap. This method can significantly reduce the required data amount used in impedance identification so that the black-box impedance-based stability method could be applied for the practical industrial application. The comparison results confirm the accuracy of the impedance model obtained by this transfer learning based impedance identification method.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4829
Author(s):  
Tarek Abedin ◽  
M. Shahadat Hossain Lipu ◽  
Mahammad A. Hannan ◽  
Pin Jern Ker ◽  
Safwan A. Rahman ◽  
...  

High-voltage direct current (HVDC) has received considerable attention due to several advantageous features such as minimum transmission losses, enhanced stability, and control operation. An appropriate model of HVDC is necessary to assess the operating conditions as well as to analyze the transient and steady-state stabilities integrated with the AC networks. Nevertheless, the construction of an HVDC model is challenging due to the high computational cost, which needs huge ranges of modeling experience. Therefore, advanced dynamic modeling of HVDC is necessary to improve stability with minimum power loss. This paper presents a comprehensive review of the various dynamic modeling of the HVDC transmission system. In line with this matter, an in-depth investigation of various HVDC mathematical models is carried out including average-value modeling (AVM), voltage source converter (VSC), and line-commutated converter (LCC). Moreover, numerous stability assessment models of HVDC are outlined with regard to stability improvement models, current-source system stability, HVDC link stability, and steady-state rotor angle stability. In addition, the various control schemes of LCC-HVDC systems and modular multilevel converter- multi-terminal direct current (MMC-MTDC) are highlighted. This paper also identifies the key issues, the problems of the existing HVDC models as well as providing some selective suggestions for future improvement. All the highlighted insights in this review will hopefully lead to increased efforts toward the enhancement of the modeling for the HVDC system.


2005 ◽  
Vol 15 (05) ◽  
pp. 403-414 ◽  
Author(s):  
V. SREE KRISHNA CHAITANYA

In this paper a nonholonomic mobile robot with completely unknown dynamics is discussed. A mathematical model has been considered and an efficient neural network is developed, which ensures guaranteed tracking performance leading to stability of the system. The neural network assumes a single layer structure, by taking advantage of the robot regressor dynamics that expresses the highly nonlinear robot dynamics in a linear form in terms of the known and unknown robot dynamic parameters. No assumptions relating to the boundedness is placed on the unmodeled disturbances. It is capable of generating real-time smooth and continuous velocity control signals that drive the mobile robot to follow the desired trajectories. The proposed approach resolves speed jump problem existing in some previous tracking controllers. Further, this neural network does not require offline training procedures. Lyapunov theory has been used to prove system stability. The practicality and effectiveness of the proposed tracking controller are demonstrated by simulation and comparison results.


Designs ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 15
Author(s):  
Ahmad Parvaresh ◽  
Saber Abrazeh ◽  
Saeid-Reza Mohseni ◽  
Meisam Jahanshahi Zeitouni ◽  
Meysam Gheisarnejad ◽  
...  

This paper proposes a deep deterministic policy gradient (DDPG) based nonlinear integral backstepping (NIB) in combination with model free control (MFC) for pitch angle control of variable speed wind turbine. In particular, the controller has been presented as a digital twin (DT) concept, which is an increasingly growing method in a variety of applications. In DDPG-NIB-MFC, the pitch angle is considered as the control input that depends on the optimal rotor speed, which is usually derived from effective wind speed. The system stability according to the Lyapunov theory can be achieved by the recursive nature of the backstepping theory and the integral action has been used to compensate for the steady-state error. Moreover, due to the nonlinear characteristics of wind turbines, the MFC aims to handle the un-modeled system dynamics and disturbances. The DDPG algorithm with actor-critic structure has been added in the proposed control structure to efficiently and adaptively tune the controller parameters embedded in the NIB controller. Under this effort, a digital twin of a presented controller is defined as a real-time and probabilistic model which is implemented on the digital signal processor (DSP) computing device. To ensure the performance of the proposed approach and output behavior of the system, software-in-loop (SIL) and hardware-in-loop (HIL) testing procedures have been considered. From the simulation and implementation outcomes, it can be concluded that the proposed backstepping controller based DDPG is more effective, robust, and adaptive than the backstepping and proportional-integral (PI) controllers optimized by particle swarm optimization (PSO) in the presence of uncertainties and disturbances.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6168
Author(s):  
Markel Zubiaga ◽  
Carmen Cardozo ◽  
Thibault Prevost ◽  
Alain Sanchez-Ruiz ◽  
Eneko Olea ◽  
...  

With an increasing capacity of inverter-based generation and with a 100% renewable energy power system on the horizon, grid forming converters have the potential to become the prevalent control mode in the grid. Thus, the correct performance of these devices is going to be crucial for system stability and security of supply. Most research related to the grid-forming control is focused on normal operating conditions, although significant effort has been devoted to current limitation strategies to ensure Low Voltage Ride Through (LVRT) capability. However, most contributions usually consider only balanced faults. This paper, proposes a new current limiting method based on the well-known threshold virtual impedance (TVI) that keeps the voltage source behaviour associated to the grid forming (GFM) capability, even when the current limit is reached, while reducing the voltage unbalance according to user-defined settings.


2021 ◽  
Author(s):  
Mengfan Zhang ◽  
xiongfei wang ◽  
Qianwen Xu

The black-box impedance of the voltage source converters (VSCs) can be directly identified at the converter terminal without access to its internal control details, which greatly facilitates the converter-grid interactions. However, since the limited impedance data amount in practical industrial applications, the existing impedance identification methods cannot accurately capture characteristics of the impedance model at various operating scenarios, which is the indicators of the VSCs system stability at the changing profiles of renewables and loads. In this paper, a transfer learning based impedance identification is proposed to fill this research gap. This method can significantly reduce the required data amount used in impedance identification so that the black-box impedance-based stability method could be applied for the practical industrial application. The comparison results confirm the accuracy of the impedance model obtained by this transfer learning based impedance identification method.


Actuators ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 20
Author(s):  
Manh Hung Nguyen ◽  
Hoang Vu Dao ◽  
Kyoung Kwan Ahn

In this paper, an active disturbance rejection control is designed to improve the position tracking performance of an electro-hydraulic actuation system in the presence of parametric uncertainties, non-parametric uncertainties, and external disturbances as well. The disturbance observers (Dos) are proposed to estimate not only the matched lumped uncertainties but also mismatched disturbance. Without the velocity measurement, the unmeasurable angular velocity is robustly calculated based on the high-order Levant’s exact differentiator. These disturbances and angular velocity are integrated into the control design system based on the backstepping framework which guarantees high-accuracy tracking performance. The system stability analysis is analyzed by using the Lyapunov theory. Simulations based on an electro-hydraulic rotary actuator are conducted to verify the effectiveness of the proposed control method.


2021 ◽  
Vol 22 (1) ◽  
pp. 113-127
Author(s):  
Mulualem Tesfaye ◽  
Baseem Khan ◽  
Om Prakash Mahela ◽  
Hassan Haes Alhelou ◽  
Neeraj Gupta ◽  
...  

Abstract Generation of renewable energy sources and their interfacing to the main system has turn out to be most fascinating challenge. Renewable energy generation requires stable and reliable incorporation of energy to the low or medium voltage networks. This paper presents the microgrid modeling as an alternative and feasible power supply for Institute of Technology, Hawassa University, Ethiopia. This microgrid consists of a 60 kW photo voltaic (PV) and a 20 kW wind turbine (WT) system; that is linked to the electrical distribution system of the campus by a 3-phase pulse width modulation scheme based voltage source inverters (VSI) and supplying power to the university buildings. The main challenge in this work is related to the interconnection of microgrid with utility grid, using 3-phase VSI controller. The PV and WT of the microgrid are controlled in active and reactive power (PQ) control mode during grid connected operation and in voltage/frequency (V/F) control mode, when the microgrid is switched to the stand-alone operation. To demonstrate the feasibility of proposed microgrid model, MATLAB/Simulink software has been employed. The performance of fully functioning microgrid is analyzed and simulated for a number of operating conditions. Simulation results supported the usefulness of developed microgrid in both mode of operation.


Sign in / Sign up

Export Citation Format

Share Document