scholarly journals Phase and Neutral Current Ripple Analysis in Three-Phase Four-Wire Split-Capacitor Grid Converter for EV Chargers

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1016
Author(s):  
Riccardo Mandrioli ◽  
Manel Hammami ◽  
Aleksandr Viatkin ◽  
Riccardo Barbone ◽  
Davide Pontara ◽  
...  

The current switching ripple in a three-phase four-wire split-capacitor converter is analyzed in this paper for all the four ac output wires in relation to both balanced and unbalanced working conditions. Specifically, analytical formulations of the peak-to-peak and root mean square (RMS) current ripples are originally evaluated as a function of the modulation index, separately for the three phases and the neutral wire. Initially, the single-carrier sinusoidal pulse width modulation (PWM) technique is outlined, as it generally concerns a straightforward and effective modulation. With the aim of mitigating the current ripple in the neutral wire, the interleaved multiple-carrier PWM strategy is adopted, also avoiding any repercussion on the phase one. Numerical simulations and experimental tests were carried out to verify all the analytical developments.

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1430
Author(s):  
Aleksandr Viatkin ◽  
Riccardo Mandrioli ◽  
Manel Hammami ◽  
Mattia Ricco ◽  
Gabriele Grandi

This paper presents a comprehensive study of peak-to-peak and root-mean-square (RMS) values of AC current ripples with balanced and unbalanced fundamental currents in a generic case of three-phase four-leg converters with uncoupled AC interface inductors present in all three phases and in neutral. The AC current ripple characteristics were determined for both phase and neutral currents, considering the sinusoidal pulse-width modulation (SPWM) method. The derived expressions are simple, effective, and ready for accurate AC current ripple calculations in three- or four-leg converters. This is particularly handy in the converter design process, since there is no need for heavy numerical simulations to determine an optimal set of design parameters, such as switching frequency and line inductances, based on the grid code or load restrictions in terms of AC current ripple. Particular attention has been paid to the performance comparison between the conventional three-phase three-leg converter and its four-leg counterpart, with distinct line inductance values in the neutral wire. In addition to that, a design example was performed to demonstrate the power of the derived equations. Numerical simulations and extensive experimental tests were thoroughly verified the analytical developments.


Author(s):  
Nunsavath Susheela ◽  
Satish Kumar

<p>Multilevel inverters (MLI) are becoming more popular over the years for medium and high power applications because of its significant merits over two level inverters. This paper presents an implementation of multicarrier based sinusoidal pulse width modulation technique for three phase seven level diode clamped multilevel inverter.  This topology is operated under phase opposition disposition pulse width modulation technique. The performance of three phase seven level diode clamped inverter is analyzed for induction motor (IM) load.  Simulation is performed using MATLAB/SIMULINK. Experimental results are presented to validate the effectiveness of the operation of the diode clamped multilevel inverter using field programmable gate array.</p>


Author(s):  
Benjamín Chavarría-Domínguez ◽  
Fernando Chavarría-Domínguez ◽  
Isidro Jimenez-Silva ◽  
Luis Alvarez-Martinez

The inverters allow us to convert direct current into alternating current with a sine waveform. This work uses the Matlab-Simulink program to develop from a graphic and block environment a SPWM (Sinusoidal Pulse Width Modulation) modulation technique that allows generating the switching pulses of a three-phase inverter based on bridges H, a simulation of the pulses applied to the inverter is also performed to record the voltage at the output of the inverter. Finally, a programming method based on the Icestudio environment is shown to integrate and be able to physically generate the pulses from an FPGA (Field-programmable gate array). The value of this work lies in the detailed description of the procedures necessary to develop the programming of the SPWM modulation that generates the switching pulses and their integration into the FPGA.


Sign in / Sign up

Export Citation Format

Share Document