scholarly journals Cybersafety Approach to Cybersecurity Analysis and Mitigation for Mobility-as-a-Service and Internet of Vehicles

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1220
Author(s):  
Chee Wei Lee ◽  
Stuart Madnick

Urban mobility is in the midst of a revolution, driven by the convergence of technologies such as artificial intelligence, on-demand ride services, and Internet-connected and self-driving vehicles. Technological advancements often lead to new hazards. Coupled with the increased levels of automation and connectivity in the new generation of autonomous vehicles, cybersecurity is emerging as a key threat affecting these vehicles. Traditional hazard analysis methods treat safety and security in isolation and are limited in their ability to account for interactions among organizational, sociotechnical, human, and technical components. In response to these challenges, the cybersafety method, based on System Theoretic Process Analysis (STPA and STPA-Sec), was developed to meet the growing need to holistically analyze complex sociotechnical systems. We applied cybersafety to coanalyze safety and security hazards, as well as identify mitigation requirements. The results were compared with another promising method known as Combined Harm Analysis of Safety and Security for Information Systems (CHASSIS). Both methods were applied to the Mobility-as-a-Service (MaaS) and Internet of Vehicles (IoV) use cases, focusing on over-the-air software updates feature. Overall, cybersafety identified additional hazards and more effective requirements compared to CHASSIS. In particular, cybersafety demonstrated the ability to identify hazards due to unsafe/unsecure interactions among sociotechnical components. This research also suggested using CHASSIS methods for information lifecycle analysis to complement and generate additional considerations for cybersafety. Finally, results from both methods were backtested against a past cyber hack on a vehicular system, and we found that recommendations from cybersafety were likely to mitigate the risks of the incident.

2018 ◽  
Vol 58 (1) ◽  
pp. 41-52 ◽  
Author(s):  
Péter Bucsky

Abstract The freight transport sector is a low profit and high competition business and therefore has less ability to invest in research and development in the field of autonomous vehicles (AV) than the private car industry. There are already different levels of automation technologies in the transport industry, but most of these are serving niche demands and answers have yet to be found about whether it would be worthwhile to industrialise these technologies. New innovations from different fields are constantly changing the freight traffic industry but these are less disruptive than on other markets. The aim of this article is to show the current state of development of freight traffic with regards to AVs and analyse which future directions of development might be viable. The level of automation is very different in the case of different transport modes and most probably the technology will favour road transport over other, less environmentally harmful traffic modes.


2020 ◽  
Vol 10 (21) ◽  
pp. 7400
Author(s):  
Lei Chen ◽  
Jian Jiao ◽  
Tingdi Zhao

ISO26262: 2018 is an international functional safety standard for electrical and/or electronic (E/E) systems within road vehicles. It provides appropriate safety requirements for road vehicles to avoid unreasonable residual risk according to automotive safety integrity levels (ASILs) derived from hazard analysis and risk assessment (HARA) required in the ISO26262 concept phase. Systems theoretic process analysis (STPA) seems to be designed specifically to deal with hazard analysis of modern complex systems, but it does not include risk evaluation required by most safety related international standards. So we integrated STPA into Failure Mode and Effect Analysis (FMEA) template to form a new method called system theoretic process analysis based on an FMEA template, STPAFT for shot, which could not only meet all the requirements of the concept phase in ISO26262, but also make full use of the advantages of the two methods. Through the focus of FMEA on low-level components, STPAFT can obtain more detailed causal factors (CFs), which is very helpful for derivation of safety goals (SGs) and the functional safety requirements (FSRs) in the concept phase of ISO26262. The application of STPAFT is described by the case study of fuel level estimation and display system (FLEDS) to show how the concept phase of ISO26262 could be supported by STPAFT.


Systems ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 33 ◽  
Author(s):  
Stylianos Karatzas ◽  
Athanasios Chassiakos

Inelasticity of demand along with the distributed energy sources and energy market democratization pose significant challenges which have considerable negative impacts on overall grid balance. The need for increased capacity and flexibility in the era of energy market digitalization has introduced new requirements in the energy supply network which could not be satisfied without continuous and costly local power network upgrades. Additionally, with the emergence of Smart Homes (SHs) and Home Energy Management (HEM) systems for monitoring and operating household appliances, opportunities have arisen for automated Demand Response (DR). DR is exploited for the modification of the consumer energy demand, in response to the specific conditions within the electricity system (e.g., peak period network congestion). In order to optimally integrate DR in the broader Smart Grid (SG) system, modelling of the system parameters and safety analysis is required. In this paper, the implementation of STPA (System-Theoretic Process Analysis) structured method, as a relatively new hazard analysis technique for complex systems is presented and the feasibility of STPA implementation for loss prevention on a Demand Response system for home energy management, and within the complex SG context, is examined. The applied method delivers a mechanism useful in understanding where gaps in current operational risk structures may exist. The STPA findings in terms of loss scenarios can be used to generate a variety of safeguards to ensure secure operational control and in implementing targeted strategies through standard approaches of risk assessment.


Author(s):  
Eliane Horschutz Nemoto ◽  
Inna Morozova ◽  
Ralf Wörner ◽  
Ines Jaroudi ◽  
Guy Fournier ◽  
...  

Nature ◽  
2018 ◽  
Vol 557 (7706) ◽  
pp. 534-538 ◽  
Author(s):  
M. M. Vazifeh ◽  
P. Santi ◽  
G. Resta ◽  
S. H. Strogatz ◽  
C. Ratti
Keyword(s):  

2019 ◽  
Author(s):  
V Bolbot ◽  
G Theotokatos ◽  
E Boulougouris ◽  
D Vassalos

Cruise ship industry is rapidly developing, with both the vessels size and number constantly growing up, which renders ensuring passengers, crew and ship safety a paramount necessity. Collision, grounding and fire are among the most frequent accidents on cruise ships with high consequences. In this study, a hazard analysis of diesel-electric and hybrid-electric propulsion system is undertaken using System-Theoretic Process Analysis (STPA). The results demonstrate significant increase in potential hazardous scenarios due to failures in automation and control systems, leading to fire and a higher number of scenarios leading to propulsion and power loss in hybrid-electric propulsion systems than on a conventional cruise-ship propulsion system. Results also demonstrate that STPA enhancement is required to compare the risk of two propulsion systems.


Sign in / Sign up

Export Citation Format

Share Document