Mobility-on-demand using autonomous vehicles: systems, solutions and challenges

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1220
Author(s):  
Chee Wei Lee ◽  
Stuart Madnick

Urban mobility is in the midst of a revolution, driven by the convergence of technologies such as artificial intelligence, on-demand ride services, and Internet-connected and self-driving vehicles. Technological advancements often lead to new hazards. Coupled with the increased levels of automation and connectivity in the new generation of autonomous vehicles, cybersecurity is emerging as a key threat affecting these vehicles. Traditional hazard analysis methods treat safety and security in isolation and are limited in their ability to account for interactions among organizational, sociotechnical, human, and technical components. In response to these challenges, the cybersafety method, based on System Theoretic Process Analysis (STPA and STPA-Sec), was developed to meet the growing need to holistically analyze complex sociotechnical systems. We applied cybersafety to coanalyze safety and security hazards, as well as identify mitigation requirements. The results were compared with another promising method known as Combined Harm Analysis of Safety and Security for Information Systems (CHASSIS). Both methods were applied to the Mobility-as-a-Service (MaaS) and Internet of Vehicles (IoV) use cases, focusing on over-the-air software updates feature. Overall, cybersafety identified additional hazards and more effective requirements compared to CHASSIS. In particular, cybersafety demonstrated the ability to identify hazards due to unsafe/unsecure interactions among sociotechnical components. This research also suggested using CHASSIS methods for information lifecycle analysis to complement and generate additional considerations for cybersafety. Finally, results from both methods were backtested against a past cyber hack on a vehicular system, and we found that recommendations from cybersafety were likely to mitigate the risks of the incident.


Author(s):  
Eliane Horschutz Nemoto ◽  
Inna Morozova ◽  
Ralf Wörner ◽  
Ines Jaroudi ◽  
Guy Fournier ◽  
...  

Author(s):  
Serena Alexander ◽  
Asha Weinstein Agrawal ◽  
Benjamin Clark

This paper focuses on how cities can use climate action plans (CAPs) to ensure that on-demand mobility and autonomous vehicles (AVs) help reduce, rather than increase, greenhouse gas (GHG) emissions and inequitable impacts from the transportation system. We employed a three-pronged research strategy involving: (1) an analysis of the current literature on on-demand mobility and AVs; (2) a systematic content analysis of 23 CAPs and general plans (GPs) developed by municipalities in California; and (3) a comparison of findings from the literature and content analysis of plans to identify opportunities for GHG emissions reduction and mobility equity. Findings indicate that policy and planning discussions should consider the synergies between AVs and on-demand mobility as two closely related emerging mobility trends, as well as the key factors (e.g., vehicle electrification, fuel efficiency, use and ownership, access, and distribution, etc.) that determine whether the deployment of AVs would help reduce GHG emissions from transportation. Additionally, AVs and on-demand mobility have the potential to contribute to a more equitable transportation system by improving independence and quality of life for individuals with disabilities and the elderly, enhancing access to transit, and helping alleviate the geographic gap in public transportation services. Although many municipal CAPs and GPs in California have adopted several strategies and programs relevant to AVs and on-demand mobility, several untapped opportunities exist to harness the GHG emissions reduction and social benefits potential of AVs and on-demand mobility.


Author(s):  
Jiajie Dai ◽  
Qianyu Zhu ◽  
Nan Jiang ◽  
Wuyang Wang

The shared autonomous mobility-on-demand (AMoD) system is a promising business model in the coming future which provides a more efficient and affordable urban travel mode. However, to maintain the efficient operation of AMoD and address the demand and supply mismatching, a good rebalancing strategy is required. This paper proposes a reinforcement learning-based rebalancing strategy to minimize passengers’ waiting in a shared AMoD system. The state is defined as the nearby supply and demand information of a vehicle. The action is defined as moving to a nearby area with eight different directions or staying idle. A 4.6 4.4 km2 region in Cambridge, Massachusetts, is used as the case study. We trained and tested the rebalancing strategy in two different demand patterns: random and first-mile. Results show the proposed method can reduce passenger’s waiting time by 7% for random demand patterns and 10% for first-mile demand patterns.


Significance China and the United States, the world's two largest car markets, are both pursuing leadership in developing autonomous vehicles and the much-touted transformation such transport will bring -- 'social mobility services'. Impacts Governments could save on road traffic infrastructure as a result of self-driving vehicles optimising existing road capacity. On-demand shared transport services will increasingly replace scheduled public transport. Multi-modal medium-distance on-demand public transport will develop, challenging the business models of airlines and railways. Harm-minimisation programming poses ethical and liability issues for driverless vehicle manufacturers, operators and owners.


Smart Cities ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 230-244 ◽  
Author(s):  
Mingyang Hao ◽  
Yanyan Li ◽  
Toshiyuki Yamamoto

Shared autonomous vehicle systems are anticipated to offer cleaner, safer, and cheaper mobility services when autonomous vehicles are finally implemented on the roads. The evaluation of people’s intentions regarding shared autonomous vehicle services appears to be critical prior to the promotion of this emerging mobility on demand approach. Based on a stated preference survey in Nagoya, Japan, the preference for shared autonomous vehicle services as well as willingness to pay for these services were examined among 1036 respondents in order to understand the relationship between people’s socioeconomic characteristics and their preferred shared autonomous vehicle services. For this purpose, k-modes clustering technique was selected and six clusters were obtained. Six groups with respect to different interests on shared autonomous vehicle services were clustered. The result of correlation analysis and discussion of willingness to pay on services provided insightful results for the future shared autonomous vehicle services. This study not only aids in revealing the demands of customer different clusters, but also states the prospective needs of users for stakeholders from research, policymaker and industry field, who are preparing to work on promoting shared autonomous vehicle systems, and subsequently, develops an optimum transportation mode by considering both demand and services as a whole.


Author(s):  
Breno A. Beirigo ◽  
Frederik Schulte ◽  
Rudy R. Negenborn

Current mobility services cannot compete on equal terms with self-owned mobility products concerning service quality. Because of supply and demand imbalances, ridesharing users invariably experience delays, price surges, and rejections. Traditional approaches often fail to respond to demand fluctuations adequately because service levels are, to some extent, bounded by fleet size. With the emergence of autonomous vehicles, however, the characteristics of mobility services change and new opportunities to overcome the prevailing limitations arise. In this paper, we consider an autonomous ridesharing problem in which idle vehicles are hired on-demand in order to meet the service-level requirements of a heterogeneous user base. In the face of uncertain demand and idle vehicle supply, we propose a learning-based optimization approach that uses the dual variables of the underlying assignment problem to iteratively approximate the marginal value of vehicles at each time and location under different availability settings. These approximations are used in the objective function of the optimization problem to dispatch, rebalance, and occasionally hire idle third-party vehicles in a high-resolution transportation network of Manhattan, New York City. The results show that the proposed policy outperforms a reactive optimization approach in a variety of vehicle availability scenarios while hiring fewer vehicles. Moreover, we demonstrate that mobility services can offer strict service-level contracts to different user groups featuring both delay and rejection penalties.


Author(s):  
Nacer-Eddine Bezai ◽  
◽  
Benachir Medjdoub ◽  
Fodil Fadli ◽  
Moulay Larby Chalal ◽  
...  

Over the last decade, there has been increasing discussions about self-driving cars and how most auto-makers are racing to launch these products. However, this discourse is not limited to transportation only, but how such vehicles will affect other industries and specific aspects of our daily lives as future users such as the concept of work while being driven and productivity, entertainment, travel speed, and deliveries. Although these technologies are beneficial, access to these potentials depends on the behaviour of their users. There is a lack of a conceptual model that elucidate the acceptance of people to Self-driving cars. Service on-demand and shared mobility are the most critical factors that will ensure the successful adoption of these cars. This paper presents an analysis of public opinions in Nottingham, UK, through a questionnaire about the future of Autonomous vehicles' ownership and the extent to which they accept the idea of vehicle sharing. Besides, this paper tests two hypotheses. Firstly, (a) people who usually use Public transportation like (taxi, bus, tram, train, carpooling) are likely to share an Autonomous Vehicle in the future. Secondly, (b) people who use Private cars are expected to own an Autonomous Vehicle in the future. To achieve this aim, a combination of statistical methods such as logistic regression has been utilised. Unexpectedly, the study findings suggested that AVs ownership will increase contrary to what is expected, that Autonomous vehicles will reduce ownership. Besides, participants have shown low interest in sharing AVs. Therefore, it is likely that ownership of AVs will increase for several reasons as expressed by the participants such as safety, privacy, personal space, suitability to children and availability. Actions must be taken to promote shared mobility to avoid AVs possession growth. The ownership diminution, in turn, will reduce traffic congestion, energy and transport efficiency, better air quality. That is why analysing the factors that influence the mindset and attitude of people will enable us to understand how to shift from private cars to transport-on-demand, which is a priority rather than promoting the technology.


2021 ◽  
Vol 13 (20) ◽  
pp. 11375
Author(s):  
Maren Schnieder ◽  
Chris Hinde ◽  
Andrew West

Regulating the curbside usage of delivery vehicles and ride-hailing services as well as micromobility has been a challenge in the last years, a challenge which might worsen with the increase of autonomous vehicles. The contribution of the research outlined in this paper is an evaluation method of the land use of on-demand meal delivery services such as Deliveroo and UberEats. It evaluates the effect parking policies, operating strategy changes, and scheduling options have on the land consumption of bicycle couriers and sidewalk automated delivery robots (SADRs). Various operating strategies (i.e., shared fleets and fleets operated by restaurants), parking policies (i.e., parking at the restaurant, parking at the customer or no parking) and scheduling options (i.e., one meal per vehicle, multiple meals per vehicle) are simulated and applied to New York City (NYC). Additionally, the time-area requirements of on-demand meal delivery services are calculated based on GPS traces of Deliveroo and UberEats riders in two UK cities. The simulation in the paper shows that SADRs can reduce the time-area requirements by half compared with bicycle couriers. The effect of operating strategy changes and forbidding vehicles to park at the customer’s home is small. Delivering multiple meals in one tour halves the time-area requirements. The time-area requirements based on GPS traces is around 300 m2·min per order. The study allows policymakers to learn more about the land use of on-demand meal delivery services and how these can be influenced. Hence, they can adjust their policy strategies to ensure that on-demand meal delivery services are provided in a way that they use land effectively, reduce external costs, improve sustainability and benefit everyone.


Sign in / Sign up

Export Citation Format

Share Document