scholarly journals Solid State Switching Control Methods: A Bibliometric Analysis for Future Directions

Electronics ◽  
2021 ◽  
Vol 10 (16) ◽  
pp. 1944
Author(s):  
Akmal. Z. Arsad ◽  
Glorria Sebastian ◽  
Mahammad A. Hannan ◽  
Pin Jern Ker ◽  
M. Safwan A. Rahman ◽  
...  

Recently, the development and controls of solid-state switching have gained significant popularity over the years especially in academic research. The development of control strategies in solid state switching applications to ensure fast switching in a protected distribution system has fueled a great deal of investigation and further developments. Therefore, a critical review and analysis in the field of solid-state switching for distribution systems are provided in this article. The Scopus database is used to compile a list of the most cited published papers in the field of solid-state switching control methods based on the identified criteria. The study explores 120 of the most cited articles emphasizing six keywords such as a solid-state breaker, solid-state transfer switch, static transfer switch, automatic transfer switch, automatic protection switches, and solid-state protection switch. The analysis was conducted using the Scopus database in the fourth week of January 2021. The 120 articles were collected from 24 different journals and 27 different countries. It is reported that 78% of the published papers outline the methodology based on control and test systems whereas 22% of articles are based on review surveys. From that, 73% of articles concentrate on the protection strategy in the system. The main objective of the article is to classify and define the highly cited published articles in the field of solid-state switching control methods as well as to provide direction for future research on fast switching in the distribution system. The analysis also highlights various factors, issues, challenges, and difficulties to identify the existing limitations and research gaps. This review will serve to strengthen the development concepts of solid-state switching control methods towards achieving improved operational performance, energy-saving, economic prosperity, and enhanced power quality. The authors believe that this bibliometric evaluation will allow academic researchers to identify opportunities for growth in the solid-state switching industry.

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1163
Author(s):  
Mengning Qiu ◽  
Avi Ostfeld

Steady-state demand-driven water distribution system (WDS) solution is the bedrock for much research conducted in the field related to WDSs. WDSs are modeled using the Darcy–Weisbach equation with the Swamee–Jain equation. However, the Swamee–Jain equation approximates the Colebrook–White equation, errors of which are within 1% for ϵ/D∈[10−6,10−2] and Re∈[5000,108]. A formulation is presented for the solution of WDSs using the Colebrook–White equation. The correctness and efficacy of the head formulation have been demonstrated by applying it to six WDSs with the number of pipes ranges from 454 to 157,044 and the number of nodes ranges from 443 to 150,630. The addition of a physically and fundamentally more accurate WDS solution method can improve the quality of the results achieved in both academic research and industrial application, such as contamination source identification, water hammer analysis, WDS network calibration, sensor placement, and least-cost design and operation of WDSs.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 338
Author(s):  
Leslie Tracy ◽  
Praveen Kumar Sekhar

In this study, a low voltage solid-state circuit breaker (SSCB) was implemented for a DC distribution system using commercially available components. The design process of the high-side static switch was enabled through a voltage bias. Detailed functional testing of the current sensor, high-side switch, thermal ratings, analog to digital conversion (ADC) techniques, and response times of the SSCB was evaluated. The designed SSCB was capable of low-end lighting protection applications and tested at 50 V. A 15 A continuous current rating was obtained, and the minimum response time of the SSCB was nearly 290 times faster than that of conventional AC protection methods. The SSCB was implemented to fill the gap where traditional AC protection schemes have failed. DC distribution systems are capable of extreme faults that can destroy sensitive power electronic equipment. However, continued research and development of the SSCB is helping to revolutionize the power industry and change the current power distribution methods to better utilize clean renewable energy systems.


2021 ◽  
Vol 11 (3) ◽  
pp. 78
Author(s):  
Catarina Fernandes ◽  
Rui Pires

This paper presents the results of a bibliometric analysis of published academic research on innovation in hotels. In particular, it aims to analyze the conceptual structure of the field, covering the period until October 2020, and predict emerging trends. This approach provides an exhaustive analysis of 334 papers collected from the Scopus database. Co-word analysis used to identify the conceptual structure reveals four clusters: (1) technological innovation, (2) innovativeness and innovation strategy, (3) knowledge and employee innovative behavior, and (4) performance as an outcome of organizational capability to innovate. The present study contributes to the literature by increasing the accumulation of knowledge on research topics, providing an up-to-date review on hotel innovation literature, and setting forth an agenda for future research.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1293 ◽  
Author(s):  
Choi ◽  
Kim

This study compares the performance of self-adaptive optimization approaches in efficient water distribution systems (WDS) design and presents a guide for the selection of the appropriate method employing optimization utilizing the characteristic of each technique formulation. To this end, this study performs three types of analyses. First, the sensitivity analysis of each self-adaptive approach is conducted on single/multi-objective mathematical benchmark problems with various problem types (e.g., using solution shape or many local optimal solutions). Second, based on the applications and results of the mathematical problem, the performance of the algorithm is verified in the WDS design problem considering the minimum cost and the maximum system resilience under the single/multi-objective optimization framework. Third, the characteristics of search operators in the self-adaptive approach are compared according to the presence or absence of additional parameters and operators. Moreover, various performance indices are employed to compare the quantitative evaluation of each algorithm. Each algorithm is found to exhibit different characteristics depending on the problem scale and solution type. These results are expected to benefit future research in the formulation of new approaches and developments. Hence, this study provides rigorous testing of the performance of newly proposed algorithms in a highly simplified manner.


2014 ◽  
Vol 535 ◽  
pp. 455-459
Author(s):  
Jing Guo Zhao ◽  
Yu Long Yang ◽  
Cong Li

Due to the existence of some kinds of minim organic matters in drinking water distribution systems, biofilms are commonly found on the inner walls of pipe networks, and it can contribute to the deterioration to water quality and influence water supply security. The current situations of the study of the biofilm are summarized. Two typical kinds of reactors often used in laboratories are stated. And numerous environmental factors influencing biofilm formation, including hydraulic condition, water temperature, pipe material, water temperature, disinfectant residuals and nutrient element, are reviewed. Furthermore, some key aspects for future research to control the development of biofilms are proposed. Keywords: drinking water distribution system; biofilm; simulation system; disinfectant residual


Author(s):  
Hongxia Jin

This chapter discusses the cryptographic traitor tracing technology that is used to defend against piracy in multimedia content distribution. It talks about different potential pirate attacks in a multimedia content distribution system. It discusses how traitor tracing technologies can be used to defend against those attacks by identifying the attackers involved in the piracy. While traitor tracing has been a long standing cryptographic problem that has attracted extensive research, the main purpose of this chapter is to show how to overcome many practical concerns in order to bring a theoretical solution to practice. Many of these practical concerns have been overlooked in academic research. The author brings firsthand experience on bringing this technology to practice in the context of new industry standards on content protection for next generation high-definition DVDs. The author also hopes to shed new insightson future research directions in this space.


Water ◽  
2018 ◽  
Vol 10 (3) ◽  
pp. 307 ◽  
Author(s):  
Helena Mala-Jetmarova ◽  
Nargiz Sultanova ◽  
Dragan Savic

Optimisation of water distribution system design is a well-established research field, which has been extremely productive since the end of the 1980s. Its primary focus is to minimise the cost of a proposed pipe network infrastructure. This paper reviews in a systematic manner articles published over the past three decades, which are relevant to the design of new water distribution systems, and the strengthening, expansion and rehabilitation of existing water distribution systems, inclusive of design timing, parameter uncertainty, water quality, and operational considerations. It identifies trends and limits in the field, and provides future research directions. Exclusively, this review paper also contains comprehensive information from over one hundred and twenty publications in a tabular form, including optimisation model formulations, solution methodologies used, and other important details.


Author(s):  
Harriet Whiley ◽  
Jason Hinds ◽  
James Xi ◽  
Richard Bentham

Within hospitals and healthcare facilities opportunistic premise plumbing pathogens (OPPPs) are a major and preventable cause of healthcare-acquired infections. This study presents a novel approach for monitoring building water quality using real-time surveillance of parameters measured at thermostatic mixing valves (TMVs) across a hospital water distribution system. Temperature was measured continuously in real-time at the outlet of 220 TMVs located across a hospital over a three-year period and analysis of this temperature data was used to identify flow events. This real-time temperature and flow information was then compared with microbial water quality. Water samples were collected randomly from faucets over the three-year period. These were tested for total heterotrophic bacteria, Legionella spp. and L. pneumophila. A statistically significant association with total heterotrophic bacteria concentrations and the number of flow events seven days prior (rs[865] = −0.188, p < 0.01) and three days prior to sampling (rs[865] = −0.151, p < 0.01) was observed, with decreased heterotrophic bacteria linked to increased flushing events. Only four samples were positive for Legionella and statistical associations could not be determined; however, the environmental conditions for these four samples were associated with higher heterotrophic counts. This study validated a simple and effective remote monitoring approach to identifying changes in water quality and flagging high risk situations in real-time. This provides a complementary surveillance strategy that overcomes the time delay associated with microbial culture results. Future research is needed to explore the use of this monitoring approach as an indicator for different opportunistic pathogens.


2009 ◽  
Vol 9 (4) ◽  
pp. 395-404 ◽  
Author(s):  
Lina Perelman ◽  
Ariel Krapivka ◽  
Avi Ostfeld

This manuscript describes the application of two recent methodologies developed by the authors for single and multi-objective optimal design of water distribution systems. The single-objective model is a hybrid algorithm incorporating decomposition, spanning tree search, and evolutionary computation, while the multi-objective algorithm integrates features form multi-objective genetic algorithms with the Cross Entropy combinatorial optimization scheme. The two models are implemented on the Hanoi water distribution system, one of the more explored systems in the research literature, through base runs and sensitivity analysis. The single-objective model produced the best known least cost solution for split pipe design, while the multi-objective model has shown robustness and well explanatory outcomes. Discussion of the accomplished results and suggestions for future research are provided.


Author(s):  
Christos Lemonakis ◽  
Marios Nikolaos Kouskoukis ◽  
Alexandros Garefalakis ◽  
Constantin Zopounidis ◽  
Marianna Eskantar

This chapter presents the evolution of academic research in Ethical Investments (EI) research between 1990 and 2019. The chapter analyzes the most influential journals in EI research by searching for papers, which were published on the Scopus database. Results show a steadily increasing rate of EI research during the past 30 years. The chapter reports the top academic journals that permanently publish articles about EI research. The main contribution of this work is to develop a general overview of the leading journals in EI research, which leads to the development of a future research agenda for bibliometric analysis. The survey covers all main areas of Social Sciences, Business, Management and Accounting, Economics, Econometrics, and Finance as well as Decision Sciences and its connections with other analytical fields.


Sign in / Sign up

Export Citation Format

Share Document