scholarly journals Switching Ripple Harmonics Attenuation in DFIG and Matrix Converter-Based WECS

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2589
Author(s):  
Gytis Svinkunas ◽  
Gytis Petrauskas

The analysis presented in this paper is focused on the harmonics distortion damping in the case of bidirectional power-flow of the electronics device—matrix converter as an interface between two power sources. Bidirectional energy flow takes place in the matrix converter that is used in renewables, hybrid transformers, microgrids, etc. It is observed that the matrix converter generates sinusoidal voltage with some amount of harmonic distortion and worsens in the quality of power in the utility grid. Taking into account the bi-directional energy flow and the matrix converter operation principle, four key requirements for the filters are formulated. Six theoretically possible filter topologies are investigated for compliance with these requirements. Two of the filter topologies are recognized as complying with these requirements and applicable for the switching ripple harmonics damping in the utility grid connected matrix converter in the case of bidirectional power flow. The suitability of these topologies was verified by MATLAB/Simulink simulation. Using the proper filter topology will significantly reduce the size, weight and cost of the components of the filter, as well as the utility grid’s pollution by switching ripple harmonics. It is appropriate to apply such filters to matrix converters that operate in wind turbines installed in doubly fed induction generators. These filters should also be used in hybrid transformers and other high-power devices with matrix converters.

Electronics ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 812
Author(s):  
Diogo Varajão ◽  
Rui Esteves Araújo

Matrix converters (MCs) allow the implementation of single-stage AC/AC power conversion systems (PCS) with inherent bidirectional power flow capability. By avoiding the typical DC-link capacitor, MCs have the potential to achieve higher power density with a more reliable operation and less maintenance when compared with conventional two-stage AC/DC/AC PCS. For these reasons, matrix converters have been receiving significant attention from the academic sector but have not yet been implemented on a large industrial scale. This article reviews the Direct Matrix Converter (DMC) and the Indirect Matrix Converter (IMC) along with the respective actual and most important modulation methods. Simulation results are provided to validate the theoretical analysis and to get a deep insight about the implementation of space vector modulation (SVM) and respective switching pattern generator.


2018 ◽  
Vol 7 (4) ◽  
pp. 2672
Author(s):  
Shamsher Ansari ◽  
Aseem Chandel ◽  
SMIEEE . ◽  
Zulfiqar Ali Sheikh

Recently the tremendous advancement has been seen in the field of matrix converter topology. For high power drive applications, industries often need high power AC-AC converters like three level matrix converter because it is having the ability to generate a set of balanced sine waves for inputs as well as outputs. The three level matrix converters possess better output performance with reduced harmonic contents compared to all two-stage indirect matrix converters. In this matrix converter topology, the idea of neutral-point clamped-VSI is employed to the inversion step of the matrix converter circuitry. To control the power switches the gate signals are produced using NTVV based space vector modulation. To justify the theoretical study a complete model of a three-level twin-step matrix converter has been designed in Matlab/Simulink and its performances are analysed.  


2019 ◽  
Vol 9 (17) ◽  
pp. 3545 ◽  
Author(s):  
Umair Tahir ◽  
Ghulam Abbas ◽  
Dan Glavan ◽  
Valentina Balas ◽  
Umar Farooq ◽  
...  

This paper presents a symmetrical topology for the design of solid-state transformer; made up of power switching converters; to replace conventional bulky transformers. The proposed circuitry not only reduces the overall size but also provides power flow control with the ability to be interfaced with renewable energy resources (RESs) to fulfill the future grid requirements at consumer end. The proposed solid-state transformer provides bidirectional power flow with variable voltage and frequency operation and has the ability to maintain unity power factor; and total harmonic distortion (THD) of current for any type of load within defined limits of Institute of Electrical and Electronics Engineers (IEEE) standard. Solid state transformer offers much smaller size compared to the conventional iron core transformer. MATLAB/Simulink platform is adopted to test the validity of the proposed circuit for different scenarios by providing the simulation results evaluated at 25 kHz switching frequency.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Aida Fazliana Abdul Kadir ◽  
Tamer Khatib ◽  
Wilfried Elmenreich

This paper is an overview of some of the main issues in photovoltaic based distributed generation (PVDG). A discussion of the harmonic distortion produced by PVDG units is presented. The maximum permissible penetration level of PVDG in distribution system is also considered. The general procedures of optimal planning for PVDG placement and sizing are also explained in this paper. The result of this review shows that there are different challenges for integrating PVDG in the power systems. One of these challenges is integrated system reliability whereas the amount of power produced by renewable energy source is consistent. Thus, the high penetration of PVDG into grid can decrease the reliability of the power system network. On the other hand, power quality is considered one of the challenges of PVDG whereas the high penetration of PVDGs can lead to more harmonic propagation into the power system network. In addition to that, voltage fluctuation of the integrated PVDG and reverse power flow are two important challenges to this technology. Finally, protection of power system with integrated PVDG is one of the most critical challenges to this technology as the current protection schemes are designed for unidirectional not bidirectional power flow pattern.


Author(s):  
H.K. Chiu ◽  
Agileswari K. Ramasamy ◽  
Nadia M.L. Tan ◽  
Matthew Y.W. Teow

<span lang="EN-US">In this paper, a Wavelet modulated isolated two-stage three-phase bidirectional AC-DC converter is proposed for electric vehicle (EV) charging systems. Half-bridge resonant CLLC converter is proposed due to its high efficiency, wide gain range, galvanic isolation and bidirectional power flow. Wavelet modulation technique is used for three-phase six leg AC-DC converter due to its benefits of high DC component and lower harmonic contents. The proposed two-stage converter is developed and simulated in MATLAB Simulink environment. The contribution of this paper is on the implementation and performance analysis of Wavelet modulation in bidirectional AC-DC converters. The results show that Wavelet modulation is suitable to be implemented for the proposed bidirectional converter. The performance of the proposed converter delivers very low output voltage ripple and total harmonic distortion output current of less than 10% which is within the expected results.</span>


Author(s):  
Abhinav Vinod Deshpande

The matrix converter converts the input line voltage into a variable voltage with an unrestricted output frequency without using an intermediate circuit, dc link circuit. A pure sine in and pure sine out is the unique feature of the matrix converter. This research paper also analyzes the basic operating principle and the simulation modeling of the direct matrix converter, which is controlled by the Space Vector Pulse Width Modulation technique by using the software which is known as MATLAB/Simulink. The most desirable features in the power frequency changes can be fulfilled by using the matrix converters, and this is the reason for the tremendous interest in the topology. Since the power electronic circuits which is known as the motor drives are used to operate the AC motors at the frequencies other than that of the supply.


2021 ◽  
Vol 54 (4) ◽  
pp. 617-622
Author(s):  
Akhilesh Kumar ◽  
Pradip K. Sadhu ◽  
Jay Singh

Nowadays, the matrix converter (MC) has become the prominent power converter. Its unique qualities like single-stage ac to ac conversion, bidirectional power flow, sinusoidal response, unity power factor, and no need for dc-link makes it superior among all power converters. This archival literature investigates the various pulse width modulation (PWM) methods and proposed a novel pulse width modulation (PWM) method named Time Equivalent space vector pulse width modulation. In this article this novel modulation method is compared with exiting carrier-based pulse width control and space vector control methods for a 3 phase to 3 phase matrix converters. Simulation model is built in Matlab and comparative analysis based on total harmonic distortion (THD) will be given for different methods. Simulation results revealed that total harmonic distortion (THD) of Time Equivalent space vector PWM is least so this novel method is best and more efficient in comparison to others.


Author(s):  
Sri Vidhya Dhandapani ◽  
Venkatesan Thangavel

<p class="Abstract">This paper presents a review on the analysis of characteristics that determines the performance of the matrix converter fed AC motor drive. Review is made based on the analysis of the different characteristics achieved in the literature. Different characteristic parameters considered in this paper are total harmonic distortion, common mode voltage, voltage transfer ratio and efficiency. Comparison and analysis of these characteristic parameters is done based on various semi conductor switches, topology, and control and modulation techniques.</p>


Sign in / Sign up

Export Citation Format

Share Document