scholarly journals Event-Triggered Formation Tracking Control for Unmanned Aerial Vehicles Subjected to Deception Attacks

Electronics ◽  
2021 ◽  
Vol 10 (22) ◽  
pp. 2736
Author(s):  
Biao Sun ◽  
Zhou Gu ◽  
Tianyi Xiong

This study investigates the time-varying formation tracking (TVFT) control problem for multiple unmanned aerial vehicle (multi-UAV) systems under deception attacks by utilizing an event-triggered mechanism (ETM). First, for the sake of alleviating the communication burden, an effective ETM is designed in this paper. Second, to deal with deception attacks in the communication network, a random deception attack model under the designed ETM is constructed. Finally, a novel formation tracking control scheme for multi-UAV systems under deception attack combining the ETM is proposed to achieve the expected TVFT. The stability analysis of the formation control system is given by using the Lyapunov stability theory and linear matrix inequality (LMI) technique. Simulations are conducted to verify the effectiveness of the proposed formation control scheme.

2021 ◽  
Vol 01 (01) ◽  
pp. 2150001
Author(s):  
Jianye Gong ◽  
Yajie Ma ◽  
Bin Jiang ◽  
Zehui Mao

In this paper, the adaptive fault-tolerant formation tracking control problem for a set of heterogeneous unmanned aerial vehicle (UAV) and unmanned ground vehicle (UGV) systems with actuator loss of effectiveness faults is investigated. The cooperative fault-tolerant formation control strategy for UAV and UGV collaborative systems is classified into the altitude consensus control scheme for follower UAVs and the position cooperative formation control scheme for all followers. The altitude consensus control algorithm is designed by utilizing backstepping control technique to drive all UAVs to a desired predefined height. Then, based on synchronization formation error information, the position cooperative formation control algorithm is proposed for all followers to reach the expected position and perform the desired formation configuration. The adaptive fault estimation term is adopted in the designed fault-tolerant formation control algorithm to compensate for the actuator loss of effectiveness fault. Finally, a simulation example is proposed to reveal the validity of the designed cooperative formation tracking control scheme.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Purui Zhang ◽  
Xiaoqian Chen ◽  
Xiaogang Yang

The current paper studies guaranteed cost time-varying formation tracking design and analysis problems of high-order swarm systems subject to intermittent communications. Different from the existing work of the time-varying formation control, the time-varying formation tracking can be achieved while certain performance can be guaranteed, and the impacts of the intermittent communications and switching topologies are considered. First, a new intermittent time-varying formation tracking control protocol with a global performance index is proposed, where not only the formation regulation performances but also the control energy expenditures are involved. The codesign of the gain matrix with the performance index is achieved to compromise the formation regulation performances against control energy expenditures, and the guaranteed cost is determined to restrain the upper bound of the performance index. Then, guaranteed cost time-varying formation tracking design and analysis criteria are given, where the matrix variable of the linear matrix inequality conditions is used to design the gain matrix and to determine the guaranteed cost. Finally, a simulation example is provided to illustrate the effectiveness of the theoretical results.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Zhen Zhou ◽  
Hongbin Wang ◽  
Zhongquan Hu

Time varying formation control problem for a group of quadrotor unmanned aerial vehicles (UAVs) under Markovian switching topologies is investigated through a modified dynamic event-triggered control protocol. The formation shape is specified by a time varying vector, which prescribes the relative positions and bearings among the whole agents. Instead of the general stochastic topology, the graph is governed by a set of Markov chains to the edges, which can recover the traditional Markovian switching topologies in line with the practical communication network. The stability proof for the state space origin of the overall closed-loop system is derived from the singular perturbation method and Lyapunov stability theory. An event-triggered formation control protocol in terms of a dynamically varying threshold parameter is delicately carried out, while acquiring satisfactory resource efficiency, and Zeno behavior of triggering time sequences is excluded. Finally, simulations on six quadrotor UAVs are given to verify the effectiveness of the theoretical results.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4374
Author(s):  
Jose Bernardo Martinez ◽  
Hector M. Becerra ◽  
David Gomez-Gutierrez

In this paper, we addressed the problem of controlling the position of a group of unicycle-type robots to follow in formation a time-varying reference avoiding obstacles when needed. We propose a kinematic control scheme that, unlike existing methods, is able to simultaneously solve the both tasks involved in the problem, effectively combining control laws devoted to achieve formation tracking and obstacle avoidance. The main contributions of the paper are twofold: first, the advantages of the proposed approach are not all integrated in existing schemes, ours is fully distributed since the formulation is based on consensus including the leader as part of the formation, scalable for a large number of robots, generic to define a desired formation, and it does not require a global coordinate system or a map of the environment. Second, to the authors’ knowledge, it is the first time that a distributed formation tracking control is combined with obstacle avoidance to solve both tasks simultaneously using a hierarchical scheme, thus guaranteeing continuous robots velocities in spite of activation/deactivation of the obstacle avoidance task, and stability is proven even in the transition of tasks. The effectiveness of the approach is shown through simulations and experiments with real robots.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xuejing Lan ◽  
Zhenghao Wu ◽  
Wenbiao Xu ◽  
Guiyun Liu

This paper considers the region-based formation control for a swarm of robots with unknown nonlinear dynamics and disturbances. An adaptive neural network is designed to approximate the unknown nonlinear dynamics, and the desired formation shape is achieved by designing appropriate potential functions. Moreover, the collision avoidance, velocity consensus, and region tracking are all considered in the controller. The stability of the multirobot system has been demonstrated based on the Lyapunov theorem. Finally, three numerical simulations show the effectiveness of the proposed formation control scheme to deal with the narrow space, loss of robots, and formation merging problems.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jawhar Ghommam ◽  
Luis F. Luque-Vega ◽  
Maarouf Saad

In this paper, group formation control with collision avoidance is investigated for heterogeneous multiquadrotor vehicles. Specifically, the distance-based formation and tracking control problem are addressed in the framework of leader-follower architecture. In this scheme, the leader is assigned the task of intercepting a target whose velocity is unknown, while the follower quadrotors are arranged to set up a predefined rigid formation pattern, ensuring simultaneously interagent collision avoidance and relative localization. The adopted strategy for the control design consists in decoupling the quadrotor dynamics in a cascaded structure to handle its underactuated property. Furthermore, by imposing constraints on the orientation angles, the follower will never be overturned. Rigorous stability analysis is presented to prove the stability of the entire closed-loop system. Numerical simulation results are presented to validate the proposed control strategy.


10.5772/5801 ◽  
2005 ◽  
Vol 2 (1) ◽  
pp. 8 ◽  
Author(s):  
F. Mnif ◽  
F. Touati

This paper addresses the problem of stabilizing the dynamic model of a nonholonomic mobile robot. A discontinuous adaptive state feedback controller is derived to achieve global stability and convergence of the trajectories of the of the closed loop system in the presence of parameter modeling uncertainty. This task is achieved by a non smooth transformation in the original system followed by the derivation of a smooth time invariant control in the new coordinates. The stability and convergence analysis is built on Lyapunov stability theory.


Sign in / Sign up

Export Citation Format

Share Document