scholarly journals Low Cost Autonomous Lock-In Amplifier for Resistance/Capacitance Sensor Measurements

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1413 ◽  
Author(s):  
Paulina Maya ◽  
Belén Calvo ◽  
María Teresa Sanz-Pascual ◽  
Javier Osorio

This paper presents the design and experimental characterization of a portable high-precision single-phase lock-in instrument with phase adjustment. The core consists of an analog lock-in amplifier IC prototype, integrated in 0.18 µm CMOS technology with 1.8 V supply, which features programmable gain and operating frequency, resulting in a versatile on-chip solution with power consumption below 834 µW. It incorporates automatic phase alignment of the input and reference signals, performed through both a fixed −90° and a 4-bit digitally programmable phase shifter, specifically designed using commercially available components to operate at 1 kHz frequency. The system is driven by an Arduino YUN board, thus overall conforming a low-cost autonomous signal recovery instrument to determine, in real time, the electrical equivalent of resistive and capacitive sensors with a sensitivity of 16.3 µV/Ω @ εrS < 3% and 37 kV/F @ εrS < 5%, respectively.

1970 ◽  
Vol 4 ◽  
pp. 5-6
Author(s):  
Alejandro Márquez ◽  
Nicolás Medrano ◽  
Belén Calvo ◽  
Pedro A. Martínez

This paper presents a CMOS 1.8V-180nm analog quadrature sine oscillator. Thanks to a custom 12-bit bidirectional DAC-based architecture, the frequency can be digitally programmed over two decades with high accuracy, making it suitable as the actuation system in low-cost high-performance embedded lock-in measurement systems.


1993 ◽  
Vol 47 (4) ◽  
pp. 489-500 ◽  
Author(s):  
J. F. Power ◽  
M. C. Prystay

Homodyne photothermal spectrometry (HPS) is a very wide bandwidth signal recovery technique which uses many of the elements of lock-in detection at very low cost. The method uses a frequency sweep, with a high-frequency bandwidth of up to 10 MHz, to excite a linear photothermal system. The response sweep of the photothermal system is downshifted into a bandwidth of a few kilohertz by means of in-phase mixing with the excitation sweep with the use of a four-quadrant double-balanced mixer and a low-pass filter. Under conditions derived from theory, the filter output gives a good approximation to the real part of the photothermal system's frequency response, dispersed as a function of time. From a recording of this signal, the frequency and impulse response of the photothermal system are rapidly recovered at very high resolution. The method has been tested with the use of laser photopyroelectric effect spectrometry and provides an inexpensive, convenient method for the recovery of high-frequency photothermal signals.


2013 ◽  
Vol 22 (04) ◽  
pp. 1350019 ◽  
Author(s):  
SOLIMAN A. MAHMOUD ◽  
EMAN A. SOLIMAN

In this paper, a digitally programmable OTA-based multi-standard receiver baseband chain is presented. The multi-standard receiver baseband chain consists of two programmable gain amplifiers (PGA1 and PGA2) and a fourth-order LPF. The receiver is suitable for Bluetooth/UMTS/DVB-H/WLAN standards. Three different programmable OTA architectures based on second generation current conveyors (CCIIs) and Current Division Networks (CDNs) are discussed. The programmable OTA with the lowest power consumption, moderate area and good linearity — better than -50 dB HD3 — is selected to realize the multi-standard baseband receiver chain. The power consumption of the receiver chain is 6 mW. The DC gain varies over a 68 dB range with 1 MHz to 13.6 MHz programmable bandwidth. The receiver baseband chain is realized using 90 nm CMOS technology model under ±0.5 V voltage supply.


2003 ◽  
Vol 12 (06) ◽  
pp. 691-710 ◽  
Author(s):  
ISTVÁN PETRÁS ◽  
CSABA REKECZKY ◽  
TAMÁS ROSKA ◽  
RICARDO CARMONA ◽  
FRANCISCO JIMÉNEZ-GARRIDO ◽  
...  

This paper describes a full-custom mixed-signal chip that embeds digitally programmable analog parallel processing and distributed image memory on a common silicon substrate. The chip was designed and fabricated in a standard 0.5 μm CMOS technology and contains approximately 500 000 transistors. It consists of 1024 processing units arranged into a 32×32 grid. Each processing element contains two coupled CNN cores, thus, constituting two parallel layers of 32×32 nodes. The functional features of the chip are in accordance with the 2nd Order Complex Cell CNN-UM architecture. It is composed of two CNN layers with programmable inter- and intra-layer connections between cells. Other features are: cellular, spatial-invariant array architecture; randomly selectable memory of instructions; random storage and retrieval of intermediate images. The chip is capable of completing algorithmic image processing tasks controlled by the user-selected stored instructions. The internal analog circuitry is designed to operate with 7-bits equivalent accuracy. The physical implementation of a CNN containing second order cells allows real-time experiments of complex dynamics and active wave phenomena. Such well-known phenomena from the reaction–diffusion equations are traveling waves, autowaves, and spiral-waves. All of these active waves are demonstrated on-chip. Moreover this chip was specifically designed to be suitable for the computation of biologically inspired retina models. These computational experiments have been carried out in a developmental environment designed for testing and programming the analogic (analog-and-logic) programmable array processors.


2012 ◽  
Vol 12 (5) ◽  
pp. 1377-1383 ◽  
Author(s):  
Andrea De Marcellis ◽  
Giuseppe Ferri ◽  
Arnaldo D'Amico ◽  
Corrado Di Natale ◽  
Eugenio Martinelli

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 943
Author(s):  
Egidio Ragonese ◽  
Nunzio Spina ◽  
Alessandro Parisi ◽  
Giuseppe Palmisano

This paper exploits an effective approach to overcome the breakdown limitations of traditional galvanic isolators based on chip-scale isolation barriers, thus achieving a very high isolation rating (i.e., compliant with the reinforced isolation requirements). Such an approach is based on radio frequency (RF) planar coupling between two side-by-side co-packaged chips. Standard packaging along with proper assembling techniques can be profitably used to go beyond 20-kV surge voltage without using expensive or exotic isolation components. As a proof of concept, a bidirectional data transfer system based on RF planar coupling able to withstand an isolation rating as high as 25 kV has been designed in a low-cost standard 0.35-µm CMOS technology. Experimental measurements demonstrated a maximum data rate of 40 Mbit/s using a carrier frequency of about 1 GHz. The adopted approach also guarantees a common mode transient immunity (CMTI) of 250 kV/µs, which is a first-rate performance in view of next generation galvanic isolators for wide-bandgap power semiconductor devices, such as gallium nitride high-electron mobility transistors (GaN HEMTs) and silicon carbide (SiC) MOSFETs.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1178 ◽  
Author(s):  
Jorge Prada ◽  
Christina Cordes ◽  
Carsten Harms ◽  
Walter Lang

This contribution outlines the design and manufacturing of a microfluidic device implemented as a biosensor for retrieval and detection of bacteria RNA. The device is fully made of Cyclo-Olefin Copolymer (COC), which features low auto-fluorescence, biocompatibility and manufacturability by hot-embossing. The RNA retrieval was carried on after bacteria heat-lysis by an on-chip micro-heater, whose function was characterized at different working parameters. Carbon resistive temperature sensors were tested, characterized and printed on the biochip sealing film to monitor the heating process. Off-chip and on-chip processed RNA were hybridized with capture probes on the reaction chamber surface and identification was achieved by detection of fluorescence tags. The application of the mentioned techniques and materials proved to allow the development of low-cost, disposable albeit multi-functional microfluidic system, performing heating, temperature sensing and chemical reaction processes in the same device. By proving its effectiveness, this device contributes a reference to show the integration potential of fully thermoplastic devices in biosensor systems.


Sign in / Sign up

Export Citation Format

Share Document