scholarly journals A Novel Video Face Verification Algorithm Based on TPLBP and the 3D Siamese-CNN

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1544
Author(s):  
Yu Wang ◽  
Shuyang Ma ◽  
Xuanjing Shen

In order to reduce the computational consumption of the training and the testing phases of video face recognition methods based on a global statistical method and a deep learning network, a novel video face verification algorithm based on a three-patch local binary pattern (TPLBP) and the 3D Siamese convolutional neural network is proposed in this paper. The proposed method takes the TPLBP texture feature which has excellent performance in face analysis as the input of the network. In order to extract the inter-frame information of the video, the texture feature maps of the multi-frames are stacked, and then a shallow Siamese 3D convolutional neural network is used to realize dimension reduction. The similarity of high-level features of the video pair is solved by the shallow Siamese 3D convolutional neural network, and then mapped to the interval of 0 to 1 by linear transformation. The classification result can be obtained with the threshold of 0.5. Through an experiment on the YouTube Face database, the proposed algorithm got higher accuracy with less computational consumption than baseline methods and deep learning methods.

2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


Author(s):  
Xianjin Dai ◽  
Yang Lei ◽  
Tonghe Wang ◽  
Jun Zhou ◽  
Soumon Rudra ◽  
...  

Abstract MRI allows accurate and reliable organ delineation for many disease sites in radiation therapy due to its superior soft-tissue contrast. Manual organ-at-risk (OAR) delineation is labor-intensive, time-consuming and subjective. This study aims to develop a deep learning-based automated multi-organ segmentation method to release the labor and accelerate the treatment planning process for head-and-neck (HN) cancer radiotherapy. We propose a novel regional convolutional neural network (R-CNN) architecture, namely, mask scoring R-CNN, where, a deep attention feature pyramid network is used as backbone to extract the coarse features given MRI, followed by the feature refinement using R-CNN. The final segmentation is obtained through mask and mask scoring networks taking those refined feature maps as input. With the mask scoring mechanism incorporated into conventional mask supervision, the classification error can be highly minimized in conventional mask R-CNN architecture. A retrospective study was carried out on a cohort of 60 HN cancer patients receiving external beam radiation therapy. Five-fold cross validation was performed for the assessment of our proposed method. The Dice similarity coefficients of brain stem, left/right cochlea, left/right eye, larynx, left/right lens, mandible, optic chiasm, left/right optic nerve, oral cavity, left/right parotid, pharynx, and spinal cord are 0.89±0.06, 0.68±0.14/0.68±0.18, 0.89±0.07/0.89±0.05, 0.90±0.07, 0.67±0.18/0.67±0.10, 0.82±0.10, 0.61±0.14, 0.67±0.11/0.68±0.11, 0.92±0.07, 0.85±0.06/0.86±0.05, 0.80±0.13, and 0.77±0.15, respectively. After the model training, all OARs can be segmented within 1 minute. We have proposed and investigated a novel deep learning-based fully automatic HN multi-organ segmentation algorithm for MRI of HN cancer patients. The accurate HN OAR delineation enables further development of MRI-only based radiotherapy workflow for HN cancer.


Author(s):  
S Gopi Naik

Abstract: The plan is to establish an integrated system that can manage high-quality visual information and also detect weapons quickly and efficiently. It is obtained by integrating ARM-based computer vision and optimization algorithms with deep neural networks able to detect the presence of a threat. The whole system is connected to a Raspberry Pi module, which will capture live broadcasting and evaluate it using a deep convolutional neural network. Due to the intimate interaction between object identification and video and image analysis in real-time objects, By generating sophisticated ensembles that incorporate various low-level picture features with high-level information from object detection and scenario classifiers, their performance can quickly plateau. Deep learning models, which can learn semantic, high-level, deeper features, have been developed to overcome the issues that are present in optimization algorithms. It presents a review of deep learning based object detection frameworks that use Convolutional Neural Network layers for better understanding of object detection. The Mobile-Net SSD model behaves differently in network design, training methods, and optimization functions, among other things. The crime rate in suspicious areas has been reduced as a consequence of weapon detection. However, security is always a major concern in human life. The Raspberry Pi module, or computer vision, has been extensively used in the detection and monitoring of weapons. Due to the growing rate of human safety protection, privacy and the integration of live broadcasting systems which can detect and analyse images, suspicious areas are becoming indispensable in intelligence. This process uses a Mobile-Net SSD algorithm to achieve automatic weapons and object detection. Keywords: Computer Vision, Weapon and Object Detection, Raspberry Pi Camera, RTSP, SMTP, Mobile-Net SSD, CNN, Artificial Intelligence.


2021 ◽  
Vol 11 (21) ◽  
pp. 10216
Author(s):  
Hyungsuk Kim ◽  
Juyoung Park ◽  
Hakjoon Lee ◽  
Geuntae Im ◽  
Jongsoo Lee ◽  
...  

Ultrasound (US) imaging is widely utilized as a diagnostic screening method, and deep learning has recently drawn attention for the analysis of US images for the pathological status of tissues. While low image quality and poor reproducibility are the common obstacles in US analysis, the small size of the dataset is a new limitation for deep learning due to lack of generalization. In this work, a convolutional neural network (CNN) using multiple feature maps, such as entropy and phase images, as well as a B-mode image, was proposed to classify breast US images. Although B-mode images contain both anatomical and textual information, traditional CNNs experience difficulties in abstracting features automatically, especially with small datasets. For the proposed CNN framework, two distinct feature maps were obtained from a B-mode image and utilized as new inputs for training the CNN. These feature maps can also be made from the evaluation data and applied to the CNN separately for the final classification decision. The experimental results with 780 breast US images in three categories of benign, malignant, and normal, showed that the proposed CNN framework using multiple feature maps exhibited better performances than the traditional CNN with B-mode only for most deep network models.


Molecules ◽  
2019 ◽  
Vol 24 (18) ◽  
pp. 3383 ◽  
Author(s):  
Yuan ◽  
Wei ◽  
Guan ◽  
Jiang ◽  
Wang ◽  
...  

Molecular toxicity prediction is one of the key studies in drug design. In this paper, a deep learning network based on a two-dimension grid of molecules is proposed to predict toxicity. At first, the van der Waals force and hydrogen bond were calculated according to different descriptors of molecules, and multi-channel grids were generated, which could discover more detail and helpful molecular information for toxicity prediction. The generated grids were fed into a convolutional neural network to obtain the result. A Tox21 dataset was used for the evaluation. This dataset contains more than 12,000 molecules. It can be seen from the experiment that the proposed method performs better compared to other traditional deep learning and machine learning methods.


2019 ◽  
Vol 45 (2) ◽  
pp. 227-248 ◽  
Author(s):  
Bo Pang ◽  
Erik Nijkamp ◽  
Ying Nian Wu

This review covers the core concepts and design decisions of TensorFlow. TensorFlow, originally created by researchers at Google, is the most popular one among the plethora of deep learning libraries. In the field of deep learning, neural networks have achieved tremendous success and gained wide popularity in various areas. This family of models also has tremendous potential to promote data analysis and modeling for various problems in educational and behavioral sciences given its flexibility and scalability. We give the reader an overview of the basics of neural network models such as the multilayer perceptron, the convolutional neural network, and stochastic gradient descent, the most commonly used optimization method for neural network models. However, the implementation of these models and optimization algorithms is time-consuming and error-prone. Fortunately, TensorFlow greatly eases and accelerates the research and application of neural network models. We review several core concepts of TensorFlow such as graph construction functions, graph execution tools, and TensorFlow’s visualization tool, TensorBoard. Then, we apply these concepts to build and train a convolutional neural network model to classify handwritten digits. This review is concluded by a comparison of low- and high-level application programming interfaces and a discussion of graphical processing unit support, distributed training, and probabilistic modeling with TensorFlow Probability library.


2020 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Song Ouyang ◽  
Yansheng Li

Although the deep semantic segmentation network (DSSN) has been widely used in remote sensing (RS) image semantic segmentation, it still does not fully mind the spatial relationship cues between objects when extracting deep visual features through convolutional filters and pooling layers. In fact, the spatial distribution between objects from different classes has a strong correlation characteristic. For example, buildings tend to be close to roads. In view of the strong appearance extraction ability of DSSN and the powerful topological relationship modeling capability of the graph convolutional neural network (GCN), a DSSN-GCN framework, which combines the advantages of DSSN and GCN, is proposed in this paper for RS image semantic segmentation. To lift the appearance extraction ability, this paper proposes a new DSSN called the attention residual U-shaped network (AttResUNet), which leverages residual blocks to encode feature maps and the attention module to refine the features. As far as GCN, the graph is built, where graph nodes are denoted by the superpixels and the graph weight is calculated by considering the spectral information and spatial information of the nodes. The AttResUNet is trained to extract the high-level features to initialize the graph nodes. Then the GCN combines features and spatial relationships between nodes to conduct classification. It is worth noting that the usage of spatial relationship knowledge boosts the performance and robustness of the classification module. In addition, benefiting from modeling GCN on the superpixel level, the boundaries of objects are restored to a certain extent and there are less pixel-level noises in the final classification result. Extensive experiments on two publicly open datasets show that DSSN-GCN model outperforms the competitive baseline (i.e., the DSSN model) and the DSSN-GCN when adopting AttResUNet achieves the best performance, which demonstrates the advance of our method.


Author(s):  
В’ячеслав Васильович Москаленко ◽  
Альона Сергіївна Москаленко ◽  
Артем Геннадійович Коробов ◽  
Микола Олександрович Зарецький ◽  
Віктор Анатолійович Семашко

The efficient model and learning algorithm of the small object detection system for compact aerial vehicle under conditions of restricted computing resources and the limited volume of the labeled learning set are developed. The four-stage learning algorithm of the object detector is proposed. At the first stage, selecting the type of deep convolutional neural network and the number of low-level layers that is pretrained on the ImageNet dataset for reusing takes place. The second stage involves unsupervised learning of high-level convolutional sparse coding layers using the modification of growing neural gas to automatically determine the required number of neurons and provide optimal distributions of the neurons over the data. Its application makes it possible to utilize the unlabeled learning datasets for the adaptation of the high-level feature description to the domain application area. At the third stage, the output feature map is formed by concatenation of feature maps from the different level of the deep convolutional neural network. At that, there is a reduction of output feature map using principal component analysis and followed by the building of decision rules. In order to perform the classification analysis of output, feature map is proposed to use information-extreme classifier learning on principles of boosting. Besides that, the orthogonal incremental extreme learning machine is used to build the regression model for the predict bounding box of the detected small object. The last stage involves fine-tuning of high-level layers of deep network using simulated annealing metaheuristic algorithm in order to approximate the global optimum of the complex criterion of learning efficiency of detection model. As a result of the use of proposed approach has been achieved 96% correctly detection of objects on the images of the open test dataset which indicates the suitability of the model and learning algorithm for practical use. In this case, the size of the learning dataset that has been used to construct the model was 500 unlabeled and 200 labeled learning samples


Sign in / Sign up

Export Citation Format

Share Document