graph nodes
Recently Published Documents


TOTAL DOCUMENTS

32
(FIVE YEARS 15)

H-INDEX

7
(FIVE YEARS 1)

2021 ◽  
Vol 2113 (1) ◽  
pp. 012082
Author(s):  
Yulong Dai ◽  
Qiyou Shen ◽  
Xiangqian Xu ◽  
Jun Yang

Abstract Most real-world systems consist of a large number of interacting entities of many types. However, most of the current researches on systems are based on the assumption that the type of node or link in the network is unique. In other words, the network is homogeneous, containing the same type of nodes and links. Based on this assumption, differential information between nodes and edges is ignored. This paper firstly introduces the research background, challenges and significance of this research. Secondly, the basic concepts of the model are introduced. Thirdly, a novel type-sensitive LeaderRank algorithm is proposed and combined with distance rule to solve the importance ranking problem of content-associated heterogeneous graph nodes. Finally, the writer influence data set is used for experimental analysis to further prove the validity of the model.


Author(s):  
Ronghan Li ◽  
Lifang Wang ◽  
Shengli Wang ◽  
Zejun Jiang

Multi-hop machine reading comprehension (MRC) task aims to enable models to answer the compound question according to the bridging information. Existing methods that use graph neural networks to represent multiple granularities such as entities and sentences in documents update all nodes synchronously, ignoring the fact that multi-hop reasoning has a certain logical order across granular levels. In this paper, we introduce an Asynchronous Multi-grained Graph Network (AMGN) for multi-hop MRC. First, we construct a multigrained graph containing entity and sentence nodes. Particularly, we use independent parameters to represent relationship groups defined according to the level of granularity. Second, an asynchronous update mechanism based on multi-grained relationships is proposed to mimic human multi-hop reading logic. Besides, we present a question reformulation mechanism to update the latent representation of the compound question with updated graph nodes. We evaluate the proposed model on the HotpotQA dataset and achieve top competitive performance in distractor setting compared with other published models. Further analysis shows that the asynchronous update mechanism can effectively form interpretable reasoning chains at different granularity levels.


2021 ◽  
Author(s):  
zhenxiang gao ◽  
xinyu wang ◽  
Blake Blumenfeld Gaines ◽  
Jinbo Bi ◽  
minghu song

Deep generative models have recently emerged as encouraging tools for the de novo molecular structure generation. Even though considerable advances have been achieved in recent years, the field of generative molecular design is still in its infancy. One potential solution may be to integrate domain knowledge of structural or medicinal chemistry into the data-driven machine learning process to address specific deep molecule generation goals. This manuscript proposes a new graph-based hierarchical variational autoencoder (VAE) model for molecular generation. Training molecules are first decomposed into small molecular fragments. Unlike other motif-based molecular graph generative models, we further group decomposed fragments into different interchangeable fragment clusters according to their local structural environment around the attachment points where the bond-breaking occurs. In this way, each chemical structure can be transformed into a three-layer graph, in which individual atoms, decomposed fragments, or obtained fragment clusters act as graph nodes at each corresponding layer, respectively. We construct a hierarchical VAE model to learn such three-layer hierarchical graph representations of chemical structures in a fine-to-coarse order, in which atoms, decomposed fragments, and related fragment clusters act as graph nodes at each corresponding graph layer. The decoder component is designed to iteratively select a fragment out of a predicted fragment cluster vocabulary and then attach it to the preceding substructure. The newly introduced third graph layer will allow us to incorporate specific chemical structural knowledge, e.g., interchangeable fragments sharing similar local chemical environments or bioisosteres derived from matched molecular pair analysis information, into the molecular generation process. It will increase the odds of assembling new chemical moieties absent in the original training set and enhance structural diversity/novelty scores of generated structures. Our proposed approach demonstrates comparatively good performance in terms of model efficiency and other molecular evaluation metrics when compared with several other graph- and SMILES-based generative molecular models. We also analyze how our generative models' performance varies when choosing different fragment sampling techniques and radius parameters that determine the local structural environment of interchangeable fragment clusters. Hopefully, our multi-level hierarchical VAE prototyping model might promote more sophisticated works of knowledge-augmented deep molecular generation in the future.


2021 ◽  
Author(s):  
zhenxiang gao ◽  
xinyu wang ◽  
Blake Blumenfeld Gaines ◽  
Jinbo Bi ◽  
minghu song

Deep generative models have recently emerged as encouraging tools for the de novo molecular structure generation. Even though considerable advances have been achieved in recent years, the field of generative molecular design is still in its infancy. One potential solution may be to integrate domain knowledge of structural or medicinal chemistry into the data-driven machine learning process to address specific deep molecule generation goals. This manuscript proposes a new graph-based hierarchical variational autoencoder (VAE) model for molecular generation. Training molecules are first decomposed into small molecular fragments. Unlike other motif-based molecular graph generative models, we further group decomposed fragments into different interchangeable fragment clusters according to their local structural environment around the attachment points where the bond-breaking occurs. In this way, each chemical structure can be transformed into a three-layer graph, in which individual atoms, decomposed fragments, or obtained fragment clusters act as graph nodes at each corresponding layer, respectively. We construct a hierarchical VAE model to learn such three-layer hierarchical graph representations of chemical structures in a fine-to-coarse order, in which atoms, decomposed fragments, and related fragment clusters act as graph nodes at each corresponding graph layer. The decoder component is designed to iteratively select a fragment out of a predicted fragment cluster vocabulary and then attach it to the preceding substructure. The newly introduced third graph layer will allow us to incorporate specific chemical structural knowledge, e.g., interchangeable fragments sharing similar local chemical environments or bioisosteres derived from matched molecular pair analysis information, into the molecular generation process. It will increase the odds of assembling new chemical moieties absent in the original training set and enhance structural diversity/novelty scores of generated structures. Our proposed approach demonstrates comparatively good performance in terms of model efficiency and other molecular evaluation metrics when compared with several other graph- and SMILES-based generative molecular models. We also analyze how our generative models' performance varies when choosing different fragment sampling techniques and radius parameters that determine the local structural environment of interchangeable fragment clusters. Hopefully, our multi-level hierarchical VAE prototyping model might promote more sophisticated works of knowledge-augmented deep molecular generation in the future.


2021 ◽  
Vol 15 (6) ◽  
pp. 1-39
Author(s):  
Mikel Joaristi ◽  
Edoardo Serra

Graph representation learning methods have attracted an increasing amount of attention in recent years. These methods focus on learning a numerical representation of the nodes in a graph. Learning these representations is a powerful instrument for tasks such as graph mining, visualization, and hashing. They are of particular interest because they facilitate the direct use of standard machine learning models on graphs. Graph representation learning methods can be divided into two main categories: methods preserving the connectivity information of the nodes and methods preserving nodes’ structural information. Connectivity-based methods focus on encoding relationships between nodes, with connected nodes being closer together in the resulting latent space. While methods preserving structure generate a latent space where nodes serving a similar structural function in the network are encoded close to each other, independently of them being connected or even close to each other in the graph. While there are a lot of works that focus on preserving node connectivity, only a few works focus on preserving nodes’ structure. Properly encoding nodes’ structural information is fundamental for many real-world applications as it has been demonstrated that this information can be leveraged to successfully solve many tasks where connectivity-based methods usually fail. A typical example is the task of node classification, i.e., the assignment or prediction of a particular label for a node. Current limitations of structural representation methods are their scalability, representation meaning, and no formal proof that guaranteed the preservation of structural properties. We propose a new graph representation learning method, called Structural Iterative Representation learning approach for Graph Nodes ( SIR-GN ). In this work, we propose two variations ( SIR-GN: GMM and SIR-GN: K-Means ) and show how our best variation SIR-GN: K-Means : (1) theoretically guarantees the preservation of graph structural similarities, (2) provides a clear meaning about its representation and a way to interpret it with a specifically designed attribution procedure, and (3) is scalable and fast to compute. In addition, from our experiment, we show that SIR-GN: K-Means is often better or, in the worst-case comparable than the existing structural graph representation learning methods present in the literature. Also, we empirically show its superior scalability and computational performance when compared to other existing approaches.


Actuators ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 91
Author(s):  
Yi-Jing Zhang ◽  
Li-Sheng Hu

The control valve is an important piece of equipment in the steam turbine, which frequently suffers from the fault of the dead zone. The graph model is a promising method for dead zone detection, yet establishing an accurate and completed graph topology is not an easy task due to limited mechanism knowledge. Hence, a graph model is proposed to predict the links in the graph and estimate the relationship between variables of related equipment of the control valve. The graph convolution is conducted on the uncompleted graph to learn the low-level representations of the graph nodes, and the score function is used to evaluate the probability of the existence of links between a pair of graph nodes. Results demonstrate a test accuracy of 99.2% for the link prediction, and follow the principles of thermodynamics in the steam turbine. Consequently, the proposed graph model is capable of estimating the relationships for the steam turbine control valve, and other inter-connected industrial systems.


Author(s):  
Shupeng Gui ◽  
Xiangliang Zhang ◽  
Pan Zhong ◽  
Shuang Qiu ◽  
Mingrui Wu ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 119
Author(s):  
Song Ouyang ◽  
Yansheng Li

Although the deep semantic segmentation network (DSSN) has been widely used in remote sensing (RS) image semantic segmentation, it still does not fully mind the spatial relationship cues between objects when extracting deep visual features through convolutional filters and pooling layers. In fact, the spatial distribution between objects from different classes has a strong correlation characteristic. For example, buildings tend to be close to roads. In view of the strong appearance extraction ability of DSSN and the powerful topological relationship modeling capability of the graph convolutional neural network (GCN), a DSSN-GCN framework, which combines the advantages of DSSN and GCN, is proposed in this paper for RS image semantic segmentation. To lift the appearance extraction ability, this paper proposes a new DSSN called the attention residual U-shaped network (AttResUNet), which leverages residual blocks to encode feature maps and the attention module to refine the features. As far as GCN, the graph is built, where graph nodes are denoted by the superpixels and the graph weight is calculated by considering the spectral information and spatial information of the nodes. The AttResUNet is trained to extract the high-level features to initialize the graph nodes. Then the GCN combines features and spatial relationships between nodes to conduct classification. It is worth noting that the usage of spatial relationship knowledge boosts the performance and robustness of the classification module. In addition, benefiting from modeling GCN on the superpixel level, the boundaries of objects are restored to a certain extent and there are less pixel-level noises in the final classification result. Extensive experiments on two publicly open datasets show that DSSN-GCN model outperforms the competitive baseline (i.e., the DSSN model) and the DSSN-GCN when adopting AttResUNet achieves the best performance, which demonstrates the advance of our method.


2020 ◽  
Vol 10 (17) ◽  
pp. 5833
Author(s):  
Jian Shi ◽  
Xin-Yu Tian

To improve the prediction ability of ranking models in sports, a generalized PageRank model is introduced. In the model, a game graph is constructed from the perspective of Bayesian correction with game results. In the graph, nodes represent teams, and a link function is used to synthesize the information of each game to calculate the weight on the graph’s edge. The parameters of the model are estimated by minimizing the loss function, which measures the gap between the predicted rank obtained by the model and the actual rank. The application to the National Basketball Association (NBA) data shows that the proposed model can achieve better prediction performance than the existing ranking models.


Sign in / Sign up

Export Citation Format

Share Document