Weapon and Object Detection Using Mobile-Net SSD Model in Deep Neural Network

Author(s):  
S Gopi Naik

Abstract: The plan is to establish an integrated system that can manage high-quality visual information and also detect weapons quickly and efficiently. It is obtained by integrating ARM-based computer vision and optimization algorithms with deep neural networks able to detect the presence of a threat. The whole system is connected to a Raspberry Pi module, which will capture live broadcasting and evaluate it using a deep convolutional neural network. Due to the intimate interaction between object identification and video and image analysis in real-time objects, By generating sophisticated ensembles that incorporate various low-level picture features with high-level information from object detection and scenario classifiers, their performance can quickly plateau. Deep learning models, which can learn semantic, high-level, deeper features, have been developed to overcome the issues that are present in optimization algorithms. It presents a review of deep learning based object detection frameworks that use Convolutional Neural Network layers for better understanding of object detection. The Mobile-Net SSD model behaves differently in network design, training methods, and optimization functions, among other things. The crime rate in suspicious areas has been reduced as a consequence of weapon detection. However, security is always a major concern in human life. The Raspberry Pi module, or computer vision, has been extensively used in the detection and monitoring of weapons. Due to the growing rate of human safety protection, privacy and the integration of live broadcasting systems which can detect and analyse images, suspicious areas are becoming indispensable in intelligence. This process uses a Mobile-Net SSD algorithm to achieve automatic weapons and object detection. Keywords: Computer Vision, Weapon and Object Detection, Raspberry Pi Camera, RTSP, SMTP, Mobile-Net SSD, CNN, Artificial Intelligence.

Author(s):  
Ankith I

Abstract: Object detection is related to computer vision and involves identifying the kinds of objects that have been detected. It is challenging to detect and classify objects. Recent advances in deep learning have allowed it to detect objects more accurately. In the past, there were several methods or tools used: R-CNN, Fast-RCNN, Faster-RCNN, YOLO, SSD, etc. This research focuses on "You Only Look Once" (YOLO) as a type of Convolutional Neural Network. Results will be accurate and timely when tested. So, we analysed YOLOv3's work by using Yolo3-tiny to detect both image and video objects. Keywords: YOLO, Intersection over Union (IOU), Anchor box, Non-Max Suppression, YOLO application, limitation.


2020 ◽  
Vol 12 (22) ◽  
pp. 9785
Author(s):  
Kisu Lee ◽  
Goopyo Hong ◽  
Lee Sael ◽  
Sanghyo Lee ◽  
Ha Young Kim

Defects in residential building façades affect the structural integrity of buildings and degrade external appearances. Defects in a building façade are typically managed using manpower during maintenance. This approach is time-consuming, yields subjective results, and can lead to accidents or casualties. To address this, we propose a building façade monitoring system that utilizes an object detection method based on deep learning to efficiently manage defects by minimizing the involvement of manpower. The dataset used for training a deep-learning-based network contains actual residential building façade images. Various building designs in these raw images make it difficult to detect defects because of their various types and complex backgrounds. We employed the faster regions with convolutional neural network (Faster R-CNN) structure for more accurate defect detection in such environments, achieving an average precision (intersection over union (IoU) = 0.5) of 62.7% for all types of trained defects. As it is difficult to detect defects in a training environment, it is necessary to improve the performance of the network. However, the object detection network employed in this study yields an excellent performance in complex real-world images, indicating the possibility of developing a system that would detect defects in more types of building façades.


2019 ◽  
Vol 9 (16) ◽  
pp. 3312 ◽  
Author(s):  
Zhu ◽  
Ge ◽  
Liu

In order to realize the non-destructive intelligent identification of weld surface defects, an intelligent recognition method based on deep learning is proposed, which is mainly formed by convolutional neural network (CNN) and forest random. First, the high-level features are automatically learned through the CNN. Random forest is trained with extracted high-level features to predict the classification results. Secondly, the weld surface defects images are collected and preprocessed by image enhancement and threshold segmentation. A database of weld surface defects is established using pre-processed images. Finally, comparative experiments are performed on the weld surface defects database. The results show that the accuracy of the method combined with CNN and random forest can reach 0.9875, and it also demonstrates the method is effective and practical.


2020 ◽  
Vol 17 (8) ◽  
pp. 3478-3483
Author(s):  
V. Sravan Chowdary ◽  
G. Penchala Sai Teja ◽  
D. Mounesh ◽  
G. Manideep ◽  
C. T. Manimegalai

Road injuries are a big drawback in society for a few time currently. Ignoring sign boards while moving on roads has significantly become a major cause for road accidents. Thus we came up with an approach to face this issue by detecting the sign board and recognition of sign board. At this moment there are several deep learning models for object detection using totally different algorithms like RCNN, faster RCNN, SPP-net, etc. We prefer to use Yolo-3, which improves the speed and precision of object detection. This algorithm will increase the accuracy by utilizing residual units, skip connections and up-sampling. This algorithm uses a framework named Dark-net. This framework is intended specifically to create the neural network for training the Yolo algorithm. To thoroughly detect the sign board, we used this algorithm.


2020 ◽  
Vol 28 (S2) ◽  
Author(s):  
Asmida Ismail ◽  
Siti Anom Ahmad ◽  
Azura Che Soh ◽  
Mohd Khair Hassan ◽  
Hazreen Haizi Harith

The object detection system is a computer technology related to image processing and computer vision that detects instances of semantic objects of a certain class in digital images and videos. The system consists of two main processes, which are classification and detection. Once an object instance has been classified and detected, it is possible to obtain further information, including recognizes the specific instance, track the object over an image sequence and extract further information about the object and the scene. This paper presented an analysis performance of deep learning object detector by combining a deep learning Convolutional Neural Network (CNN) for object classification and applies classic object detection algorithms to devise our own deep learning object detector. MiniVGGNet is an architecture network used to train an object classification, and the data used for this purpose was collected from specific indoor environment building. For object detection, sliding windows and image pyramids were used to localize and detect objects at different locations, and non-maxima suppression (NMS) was used to obtain the final bounding box to localize the object location. Based on the experiment result, the percentage of classification accuracy of the network is 80% to 90% and the time for the system to detect the object is less than 15sec/frame. Experimental results show that there are reasonable and efficient to combine classic object detection method with a deep learning classification approach. The performance of this method can work in some specific use cases and effectively solving the problem of the inaccurate classification and detection of typical features.


Author(s):  
Melchiezhedhieck J. Bongao ◽  
◽  
Arvin F. Almadin ◽  
Christian L. Falla ◽  
Juan Carlo F. Greganda ◽  
...  

This Raspberry Single-Board Computer-Based Object and Text Real-time Recognition Wearable Device using Convolutional Neural Network through TensorFlow Deep Learning, Python and C++ programming languages, and SQLite database application, which detect stationary objects, road signs and Philippine (PHP) money bills, and recognized texts through camera and translate it to audible outputs such as English and Filipino languages. Moreover, the system has a battery notification status using an Arduino microcontroller unit. It also has a switch for object detection mode, text recognition mode, and battery status report mode. This could fulfill the incapability of visually impaired in identifying of objects and the lack of reading ability as well as reducing the assistance that visually impaired needs. Descriptive quantitative research, Waterfall System Development Life Cycle and Evolutionary Prototyping Models were used as the methodologies of this study. Visually impaired persons and the Persons with Disability Affairs Office of the City Government of Biñan, Laguna, Philippines served as the main respondents of the survey conducted. Obtained results stipulated that the object detection, text recognition, and its attributes were accurate and reliable, which gives a significant distinction from the current system to detect objects and recognize printed texts for the visually impaired people.


2020 ◽  
Vol 10 (21) ◽  
pp. 7448
Author(s):  
Jorge Felipe Gaviria ◽  
Alejandra Escalante-Perez ◽  
Juan Camilo Castiblanco ◽  
Nicolas Vergara ◽  
Valentina Parra-Garces ◽  
...  

Real-time automatic identification of audio distress signals in urban areas is a task that in a smart city can improve response times in emergency alert systems. The main challenge in this problem lies in finding a model that is able to accurately recognize these type of signals in the presence of background noise and allows for real-time processing. In this paper, we present the design of a portable and low-cost device for accurate audio distress signal recognition in real urban scenarios based on deep learning models. As real audio distress recordings in urban areas have not been collected and made publicly available so far, we first constructed a database where audios were recorded in urban areas using a low-cost microphone. Using this database, we trained a deep multi-headed 2D convolutional neural network that processed temporal and frequency features to accurately recognize audio distress signals in noisy environments with a significant performance improvement to other methods from the literature. Then, we deployed and assessed the trained convolutional neural network model on a Raspberry Pi that, along with the low-cost microphone, constituted a device for accurate real-time audio recognition. Source code and database are publicly available.


Sebatik ◽  
2020 ◽  
Vol 24 (2) ◽  
pp. 300-306
Author(s):  
Muhamad Jaelani Akbar ◽  
Mochamad Wisuda Sardjono ◽  
Margi Cahyanti ◽  
Ericks Rachmat Swedia

Sayuran merupakan sebutan bagi bahan pangan asal tumbuhan yang biasanya mengandung kadar air tinggi dan dikonsumsi dalam keadaan segar atau setelah diolah secara minimal. Keanekaragaman sayur yang terdapat di dunia menyebabkan keragaman pula dalam pengklasifikasian sayur. Oleh karena itu diperlukan adanya pendekatan digital agar dapat mengenali jenis sayuran dengan cepat dan mudah. Dalam penelitian ini jumlah jenis sayuran yang digunakan sebanyak 7 jenis diantara: brokoli, jagung, kacang panjang, pare, terung ungu, tomat dan kubis. Dataset yang digunakan berjumlah 941 gambar sayur dari 7 jenis sayur, ditambah 131 gambar sayur dari jenis yang tidak terdapat pada dataset, selain itu digunakan 291 gambar selain sayuran. Untuk melakukan klasifikasi jenis sayuran digunakan algoritme Convolutional Neural Network (CNN), yang merupakan salah satu bidang ilmu baru dalam Machine Learning dan berkembang dengan pesat. CNN merupakan salah satu algoritme yang terdapat pada metode Deep Learning dengan memiliki kemampuan yang baik dalam Computer Vision, salah satunya yaitu image classification atau klasifikasi objek citra. Uji coba dilakukan pada lima perangkat selular berbasiskan sistem operasi Android. Python digunakan sebagai bahasa pemrograman dalam merancang aplikasi mobile ini dengan menggunakan modul Tensor flow untuk melakukan training dan testing data. Metode yang dapat digunakan dalam melakukan klasifikasi citra ini yaitu Convolutional Neural Network (CNN). Hasil final test accuracy yang diperoleh yaitu didapat keakuratan mengenali jenis sayuran sebesar 98.1% dengan salah satu hasil pengujian yaitu klasifikasi sayur jagung dengan akurasi sebesar 99.98049%.


In this paper a method of recognizing logos of the brand of cosmetic products using deep learning. There are several of hoax product which easily copies the famous brand’s logo and deteriorates the company’s image. The machine learning has proved to be useful in various of the fields like medical, object detection, vehicle logo recognitions. But till now very few of the works have been performed in cosmetic field. This field is covered using the model sequential convolutional neural network using Tensorflow and Keras. For the visual representation of the result Tensorboard is used. Work have been started with two of the brands-Lakme and L’Oreal. Depending upon the success of this technique, further brands for logo may be added for recognition. The accuracy of approximately 80% was obtained using this technique.


2021 ◽  
Author(s):  
Abhinav Sundar

The objective of this thesis was to evaluate the viability of implementation of an object recognition algorithm driven by deep learning for aerospace manufacturing, maintenance and assembly tasks. Comparison research has found that current computer vision methods such as, spatial mapping was limited to macro-object recognition because of its nodal wireframe analysis. An optical object recognition algorithm was trained to learn complex geometric and chromatic characteristics, therefore allowing for micro-object recognition, such as cables and other critical components. This thesis investigated the use of a convolutional neural network with object recognition algorithms. The viability of two categories of object recognition algorithms were analyzed: image prediction and object detection. Due to a viral epidemic, this thesis was limited in analytical consistency as resources were not readily available. The prediction-class algorithm was analyzed using a custom dataset comprised of 15 552 images of the MaxFlight V2002 Full Motion Simulator’s inverter system, and a model was created by transfer-learning that dataset onto the InceptionV3 convolutional neural network (CNN). The detection-class algorithm was analyzed using a custom dataset comprised of 100 images of two SUVs of different brand and style, and a model was created by transfer-learning that dataset onto the YOLOv3 deep learning architecture. The tests showed that the object recognition algorithms successfully identified the components with good accuracy, 99.97% mAP for prediction-class and 89.54% mAP. For detection-class. The accuracies and data collected with literature review found that object detection algorithms are accuracy, created for live -feed analysis and were suitable for the significant applications of AVI and aircraft assembly. In the future, a larger dataset needs to be complied to increase reliability and a custom convolutional neural network and deep learning algorithm needs to be developed specifically for aerospace assembly, maintenance and manufacturing applications.


Sign in / Sign up

Export Citation Format

Share Document