scholarly journals Vehicular Navigation Based on the Fusion of 3D-RISS and Machine Learning Enhanced Visual Data in Challenging Environments

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 193 ◽  
Author(s):  
Yunlong Sun ◽  
Lianwu Guan ◽  
Menghao Wu ◽  
Yanbin Gao ◽  
Zhanyuan Chang

Based on the 3D Reduced Inertial Sensor System (3D-RISS) and the Machine Learning Enhanced Visual Data (MLEVD), an integrated vehicle navigation system is proposed in this paper. In demanding conditions such as outdoor satellite signal interference and indoor navigation, this work incorporates vehicle smooth navigation. Firstly, a landmark is set up and both of its size and position are accurately measured. Secondly, the image with the landmark information is captured quickly by using the machine learning. Thirdly, the template matching method and the Extended Kalman Filter (EKF) are then used to correct the errors of the Inertial Navigation System (INS), which employs the 3D-RISS to reduce the overall cost and ensuring the vehicular positioning accuracy simultaneously. Finally, both outdoor and indoor experiments are conducted to verify the performance of the 3D-RISS/MLEVD integrated navigation technology. Results reveal that the proposed method can effectively reduce the accumulated error of the INS with time while maintaining the positioning error within a few meters.


2012 ◽  
Vol 245 ◽  
pp. 323-329 ◽  
Author(s):  
Muhammad Ushaq ◽  
Jian Cheng Fang

Inertial navigation systems exhibit position errors that tend to grow with time in an unbounded mode. This degradation is due, in part, to errors in the initialization of the inertial measurement unit and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Mitigation to this growth and bounding the errors is to update the inertial navigation system periodically with external position (and/or velocity, attitude) fixes. The synergistic effect is obtained through external measurements updating the inertial navigation system using Kalman filter algorithm. It is a natural requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertia Navigation System (SINS), Global Positioning System (GPS) and Doppler radar is presented using a centralized linear Kalman filter by treating vector measurements with uncorrelated errors as scalars. Two main advantages have been obtained with this improved scheme. First is the reduced computation time as the number of arithmetic computation required for processing a vector as successive scalar measurements is significantly less than the corresponding number of operations for vector measurement processing. Second advantage is the improved numerical accuracy as avoiding matrix inversion in the implementation of covariance equations improves the robustness of the covariance computations against round off errors.



Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6238
Author(s):  
Payal Mahida ◽  
Seyed Shahrestani ◽  
Hon Cheung

Wayfinding and navigation can present substantial challenges to visually impaired (VI) people. Some of the significant aspects of these challenges arise from the difficulty of knowing the location of a moving person with enough accuracy. Positioning and localization in indoor environments require unique solutions. Furthermore, positioning is one of the critical aspects of any navigation system that can assist a VI person with their independent movement. The other essential features of a typical indoor navigation system include pathfinding, obstacle avoidance, and capabilities for user interaction. This work focuses on the positioning of a VI person with enough precision for their use in indoor navigation. We aim to achieve this by utilizing only the capabilities of a typical smartphone. More specifically, our proposed approach is based on the use of the accelerometer, gyroscope, and magnetometer of a smartphone. We consider the indoor environment to be divided into microcells, with the vertex of each microcell being assigned two-dimensional local coordinates. A regression-based analysis is used to train a multilayer perceptron neural network to map the inertial sensor measurements to the coordinates of the vertex of the microcell corresponding to the position of the smartphone. In order to test our proposed solution, we used IPIN2016, a publicly-available multivariate dataset that divides the indoor environment into cells tagged with the inertial sensor data of a smartphone, in order to generate the training and validating sets. Our experiments show that our proposed approach can achieve a remarkable prediction accuracy of more than 94%, with a 0.65 m positioning error.



Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3786 ◽  
Author(s):  
Huang ◽  
Hsieh ◽  
Liu ◽  
Cheng ◽  
Hsu ◽  
...  

The interior space of large-scale buildings, such as hospitals, with a variety of departments, is so complicated that people may easily lose their way while visiting. Difficulties in wayfinding can cause stress, anxiety, frustration and safety issues to patients and families. An indoor navigation system including route planning and localization is utilized to guide people from one place to another. The localization of moving subjects is a critical-function component in an indoor navigation system. Pedestrian dead reckoning (PDR) is a technology that is widely employed for localization due to the advantage of being independent of infrastructure. To improve the accuracy of the localization system, combining different technologies is one of the solutions. In this study, a multi-sensor fusion approach is proposed to improve the accuracy of the PDR system by utilizing a light sensor, Bluetooth and map information. These simple mechanisms are applied to deal with the issue of accumulative error by identifying edge and sub-edge information from both Bluetooth and the light sensor. Overall, the accumulative error of the proposed multi-sensor fusion approach is below 65 cm in different cases of light arrangement. Compared to inertial sensor-based PDR system, the proposed multi-sensor fusion approach can improve 90% of the localization accuracy in an environment with an appropriate density of ceiling-mounted lamps. The results demonstrate that the proposed approach can improve the localization accuracy by utilizing multi-sensor data and fulfill the feasibility requirements of localization in an indoor navigation system.



2013 ◽  
Vol 332 ◽  
pp. 79-85
Author(s):  
Outamazirt Fariz ◽  
Muhammad Ushaq ◽  
Yan Lin ◽  
Fu Li

Strapdown Inertial Navigation Systems (SINS) displays position errors which grow with time in an unbounded manner. This degradation is due to the errors in the initialization of the inertial measurement unit, and inertial sensor imperfections such as accelerometer biases and gyroscope drifts. Improvement to this unbounded growth in errors can be made by updating the inertial navigation system solutions periodically with external position fixes, velocity fixes, attitude fixes or any combination of these fixes. The increased accuracy is obtained through external measurements updating inertial navigation system using Kalman filter algorithm. It is the basic requirement that the inertial data and data from the external aids be combined in an optimal and efficient manner. In this paper an efficient method for integration of Strapdown Inertial Navigation System (SINS), Global Positioning System (GPS) is presented using a centralized linear Kalman filter.



2014 ◽  
Vol 68 (2) ◽  
pp. 253-273 ◽  
Author(s):  
Shifei Liu ◽  
Mohamed Maher Atia ◽  
Tashfeen B. Karamat ◽  
Aboelmagd Noureldin

Autonomous Unmanned Ground Vehicles (UGVs) require a reliable navigation system that works in all environments. However, indoor navigation remains a challenge because the existing satellite-based navigation systems such as the Global Positioning System (GPS) are mostly unavailable indoors. In this paper, a tightly-coupled integrated navigation system that integrates two dimensional (2D) Light Detection and Ranging (LiDAR), Inertial Navigation System (INS), and odometry is introduced. An efficient LiDAR-based line features detection/tracking algorithm is proposed to estimate the relative changes in orientation and displacement of the vehicle. Furthermore, an error model of INS/odometry system is derived. LiDAR-estimated orientation/position changes are fused by an Extended Kalman Filter (EKF) with those predicted by INS/odometry using the developed error model. Errors estimated by EKF are used to correct the position and orientation of the vehicle and to compensate for sensor errors. The proposed system is verified through simulation and real experiment on an UGV equipped with LiDAR, MEMS-based IMU, and encoder. Both simulation and experimental results showed that sensor errors are accurately estimated and the drifts of INS are significantly reduced leading to navigation performance of sub-metre accuracy.



Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 120
Author(s):  
Ningbo Li ◽  
Lianwu Guan ◽  
Yanbin Gao ◽  
Zhejun Liu ◽  
Ye Wang ◽  
...  

Vehicles have to rely on satellite navigation in an open environment. However, satellite navigation cannot obtain accurate positioning information for vehicles in the interior of underground parking lots, as they comprise a semi-enclosed navigation space. Therefore, vehicular navigation needs to take into consideration both outdoor and indoor environments. Actually, outdoor navigation and indoor navigation require different positioning methods, and it is of great importance to choose a reasonable navigation and positioning algorithm solution for vehicles. Fortunately, the integrated navigation of the Global Positioning System (GPS) and the Micro-Electro-Mechanical System (MEMS) inertial navigation system could solve the problem of switching navigation algorithms in the entrance and exit of underground parking lots. This paper proposes a low cost vehicular seamless navigation technology based on the reduced inertial sensor system (RISS)/GPS between the outdoors and an underground garage. Specifically, the enhanced RISS is a positioning algorithm based on three inertial sensors and one odometer, which could achieve a similar location effect as the full model integrated navigation, reduce the costs greatly, and improve the efficiency of each sensor.



2011 ◽  
Vol 403-408 ◽  
pp. 2119-2122
Author(s):  
Zhu Yang ◽  
Xiao Long Zhu ◽  
Shuai Yuan ◽  
Qing Shan Liu

Designed the car DVD/GPS integrated navigation system video used ARM11 processor, multi-task on the system structure and operation carried out under the research to orthogonality for software construction and design guideline, orthogonal software system are summarized design ideas and organizational structures and orthogonal software design benefits. It is useful to the practical application of DVD / GPS integrated navigation system software audio construction and design.



2021 ◽  
Vol 5 (1) ◽  
pp. 60-72
Author(s):  
Mohammed Yaseen Taha ◽  
Qahhar Muhammad Qadir

With the advent of Industry 4.0, the trend of its implementation in current factories has increased tremendously. Using autonomous mobile robots that are capable of navigating and handling material in a warehouse is one of the important pillars to convert the current warehouse inventory control to more automated and smart processes to be aligned with Industry 4.0 needs. Navigating a robot’s indoor positioning in addition to finding materials are examples of location-based services (LBS), and are some major aspects of Industry 4.0 implementation in warehouses that should be considered. Global positioning satellites (GPS) are accurate and reliable for outdoor navigation and positioning while they are not suitable for indoor use. Indoor positioning systems (IPS) have been proposed in order to overcome this shortcoming and extend this valuable service to indoor navigation and positioning. This paper proposes a simple, cost effective and easily configurable indoor navigation system with the help of an optical path following, unmanned ground vehicle (UGV) robot augmented by image processing and computer vision deep machine learning algorithms. The proposed system prototype is capable of navigating in a warehouse as an example of an indoor area, by tracking and following a predefined traced path that covers all inventory zones in a warehouse, through the usage of infrared reflective sensors that can detect black traced path lines on bright ground. As metionded before, this general navigation mechanism is augmented and enhanced by artificial intelligence (AI) computer vision tasks to be able to select the path to the required inventory zone as its destination, and locate the requested material within this inventory zone. The adopted AI computer vision tasks that are used in the proposed prototype are deep machine learning object recognition algorithms for path selection and quick response (QR) detection.



2014 ◽  
Vol 67 (4) ◽  
pp. 651-671 ◽  
Author(s):  
Mohamed Maher Atia ◽  
Tashfeen Karamat ◽  
Aboelmagd Noureldin

In urban areas, Global Positioning System (GPS) accuracy deteriorates due to signal degradation and multipath effects. To provide accurate and robust navigation in such GPS-denied environments, multi-sensor integrated navigation systems are developed. This paper introduces a 3D multi-sensor navigation system that integrates inertial sensors, odometry and GPS for land-vehicle navigation. A new error model is developed and an efficient loosely coupled closed-loop Kalman Filter (Extended KF or EKF) integration scheme is proposed. In this EKF-based integration scheme, the inertial/odometry navigation output is continuously corrected by EKF-estimated errors, which keeps the errors within acceptable linearization ranges which improves the prediction accuracy of the linearized dynamic error model. Consequently, the overall performance of the integrated system is improved. Real road experiments and comparison with earlier works have demonstrated a more reliable performance during GPS signal degradation and accurate estimation of inertial sensor errors (biases) have led to a more sustainable performance reliability during long GPS complete outages.



Sign in / Sign up

Export Citation Format

Share Document