scholarly journals Delay-Based True Random Number Generator in Sub-Nanomillimeter IoT Devices

Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 817
Author(s):  
Maulana Randa ◽  
Mohammad Samie ◽  
Ian K. Jennions

True Random Number Generators (TRNGs) use physical phenomenon as their source of randomness. In electronics, one of the most popular structures to build a TRNG is constructed based on the circuits that form propagation delays, such as a ring oscillator, shift register, and routing paths. This type of TRNG has been well-researched within the current technology of electronics. However, in the future, where electronics will use sub-nano millimeter (nm) technology, the components become smaller and work on near-threshold voltage (NTV). This condition has an effect on the timing-critical circuit, as the distribution of the process variation becomes non-gaussian. Therefore, there is an urge to assess the behavior of the current delay-based TRNG system in sub-nm technology. In this paper, a model of TRNG implementation in sub-nm technology was created through the use of a specific Look-Up Table (LUT) in the Field-Programmable Gate Array (FPGA), known as SRL16E. The characterization of the TRNG was presented and it shows a promising result, in that the delay-based TRNG will work properly, with some constraints in sub-nm technology.

2014 ◽  
Vol 573 ◽  
pp. 181-186 ◽  
Author(s):  
G.P. Ramesh ◽  
A. Rajan

—Field-programmable gate array (FPGA) optimized random number generators (RNGs) are more resource-efficient than software-optimized RNGs because they can take advantage of bitwise operations and FPGA-specific features. A random number generator (RNG) is a computational or physical device designed to generate a sequence of numbers or symbols that lack any pattern, i.e. appear random. The many applications of randomness have led to the development of several different methods for generating random data. Several computational methods for random number generation exist, but often fall short of the goal of true randomness though they may meet, with varying success, some of the statistical tests for randomness intended to measure how unpredictable their results are (that is, to what degree their patterns are discernible).LUT-SR Family of Uniform Random Number Generators are able to handle randomness only based on seeds that is loaded in the look up table. To make random generation efficient, we propose new approach based on SRAM storage device.Keywords: RNG, LFSR, SRAM


2022 ◽  
Vol 4 (2) ◽  
Author(s):  
Unsub Zia ◽  
Mark McCartney ◽  
Bryan Scotney ◽  
Jorge Martinez ◽  
Ali Sajjad

AbstractPseudo-random number generators (PRNGs) are one of the building blocks of cryptographic methods and therefore, new and improved PRNGs are continuously developed. In this study, a novel method to generate pseudo-random sequences using coupled map lattices is presented. Chaotic maps only show their chaotic behaviour for a specified range of control parameters, what can restrict their application in cryptography. In this work, generalised symmetric maps with adaptive control parameter are presented. This novel idea allows the user to choose any symmetric chaotic map, while ensuring that the output is a stream of independent and random sequences. Furthermore, to increase the complexity of the generated sequences, a lattice-based structure where every local map is linked to its neighbouring node via coupling factor has been used. The dynamic behaviour and randomness of the proposed system has been studied using Kolmogorov–Sinai entropy, bifurcation diagrams and the NIST statistical suite for randomness. Experimental results show that the proposed PRNG provides a large key space, generates pseudo-random sequences and is computationally suitable for IoT devices.


2021 ◽  
Vol 14 (2) ◽  
pp. 1-20
Author(s):  
Adriaan Peetermans ◽  
Vladimir Rožić ◽  
Ingrid Verbauwhede

True Random Number Generators (TRNGs) are indispensable in modern cryptosystems. Unfortunately, to guarantee high entropy of the generated numbers, many TRNG designs require a complex implementation procedure, often involving manual placement and routing. In this work, we introduce, analyse, and compare three dynamic calibration mechanisms for the COherent Sampling ring Oscillator based TRNG: GateVar , WireVar , and LUTVar , enabling easy integration of the entropy source into complex systems. The TRNG setup procedure automatically selects a configuration that guarantees the security requirements. In the experiments, we show that two out of the three proposed mechanisms are capable of assuring correct TRNG operation even when an automatic placement is carried out and when the design is ported to another Field-Programmable Gate Array (FPGA) family. We generated random bits on both a Xilinx Spartan 7 and a Microsemi SmartFusion2 implementation that, without post processing, passed the AIS-31 statistical tests at a throughput of 4.65 Mbit/s and 1.47 Mbit/s, respectively.


Cryptography ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 8
Author(s):  
Bertrand Cambou ◽  
Donald Telesca ◽  
Sareh Assiri ◽  
Michael Garrett ◽  
Saloni Jain ◽  
...  

Schemes generating cryptographic keys from arrays of pre-formed Resistive Random Access (ReRAM) cells, called memristors, can also be used for the design of fast true random number generators (TRNG’s) of exceptional quality, while consuming low levels of electric power. Natural randomness is formed in the large stochastic cell-to-cell variations in resistance values at low injected currents in the pre-formed range. The proposed TRNG scheme can be designed with three interconnected blocks: (i) a pseudo-random number generator that acts as an extended output function to generate a stream of addresses pointing randomly at the array of ReRAM cells; (ii) a method to read the resistance values of these cells with a low injected current, and to convert the values into a stream of random bits; and, if needed, (iii) a method to further enhance the randomness of this stream such as mathematical, Boolean, and cryptographic algorithms. The natural stochastic properties of the ReRAM cells in the pre-forming range, at low currents, have been analyzed and demonstrated by measuring a statistically significant number of cells. Various implementations of the TRNGs with ReRAM arrays are presented in this paper.


2021 ◽  
Vol 11 (8) ◽  
pp. 3330
Author(s):  
Pietro Nannipieri ◽  
Stefano Di Matteo ◽  
Luca Baldanzi ◽  
Luca Crocetti ◽  
Jacopo Belli ◽  
...  

Random numbers are widely employed in cryptography and security applications. If the generation process is weak, the whole chain of security can be compromised: these weaknesses could be exploited by an attacker to retrieve the information, breaking even the most robust implementation of a cipher. Due to their intrinsic close relationship with analogue parameters of the circuit, True Random Number Generators are usually tailored on specific silicon technology and are not easily scalable on programmable hardware, without affecting their entropy. On the other hand, programmable hardware and programmable System on Chip are gaining large adoption rate, also in security critical application, where high quality random number generation is mandatory. The work presented herein describes the design and the validation of a digital True Random Number Generator for cryptographically secure applications on Field Programmable Gate Array. After a preliminary study of literature and standards specifying requirements for random number generation, the design flow is illustrated, from specifications definition to the synthesis phase. Several solutions have been studied to assess their performances on a Field Programmable Gate Array device, with the aim to select the highest performance architecture. The proposed designs have been tested and validated, employing official test suites released by NIST standardization body, assessing the independence from the place and route and the randomness degree of the generated output. An architecture derived from the Fibonacci-Galois Ring Oscillator has been selected and synthesized on Intel Stratix IV, supporting throughput up to 400 Mbps. The achieved entropy in the best configuration is greater than 0.995.


Author(s):  
SELÇUK COŞKUN ◽  
İHSAN PEHLİVAN ◽  
AKİF AKGÜL ◽  
BİLAL GÜREVİN

The basis of encryption techniques is random number generators (RNGs). The application areas of cryptology are increasing in number due to continuously developing technology, so the need for RNGs is increasing rapidly, too. RNGs can be divided into two categories as pseudorandom number generator (PRNGs) and true random number generator (TRNGs). TRNGs are systems that use unpredictable and uncontrollable entropy sources and generate random numbers. During the design of TRNGs, while analog signals belonging to the used entropy sources are being converted to digital data, generally comparators, flip-flops, Schmitt triggers, and ADCs are used. In this study, a computer-controlled new and flexible platform to find the most appropriate system parameters in ADC-based TRNG designs is designed and realized. As a sample application with this new platform, six different TRNGs that use three different outputs of Zhongtang, which is a continuous time chaotic system, as an entropy source are designed. Random number series generated with the six designed TRNGs are put through the NIST800–22 test, which has the internationally highest standards, and they pass all tests. With the help of the new platform designed, ADC-based high-quality TRNGs can be developed fast and also without the need for expertise. The platform has been designed to decide which entropy source and parameter are better by comparing them before complex embedded TRNG designs. In addition, this platform can be used for educational purposes to explain how to work an ADC-based TRNG. That is why it can be utilized as an experiment set in engineering education, as well.


2015 ◽  
Vol 6 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Pierre Bayon ◽  
Lilian Bossuet ◽  
Alain Aubert ◽  
Viktor Fischer

Sign in / Sign up

Export Citation Format

Share Document