scholarly journals Evaluation Method of Heavy-Ion-Induced Single-Event Upset in 3D-Stacked SRAMs

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1230
Author(s):  
Peixiong Zhao ◽  
Tianqi Liu ◽  
Chang Cai ◽  
Ze He ◽  
Dongqing Li ◽  
...  

The interaction of radiation with three-dimensional (3D) electronic devices can be determined through the detection of single-event effects (SEU). In this study, we propose a method for the evaluation of SEUs in 3D static random-access memories (SRAMs) induced by heavy-ion irradiation. The cross-sections (CSs) of different tiers, as a function of the linear energy transfer (LET) under high, medium, and low energy heavy-ion irradiation, were obtained through Monte Carlo simulations. The simulation results revealed that the maximum value of the CS was obtained under the medium-energy heavy-ion penetration, and the effect of penetration range of heavy ions was observed in different tiers of 3D-stacked devices. The underlying physical mechanisms of charge collection under different heavy-ion energies were discussed. Thereafter, we proposed an equation of the critical heavy-ion range that can be used to obtain the worst CS curve was proposed. Considering both the LET spectra and flux of galactic cosmic ray (GCR) and the variation in the heavy-ion Bragg peak values with the atomic number, we proposed a heavy-ion irradiation test guidance for 3D-stacked devices. In addition, the effectiveness of this method was verified through simulations of the three-tier vertically stacked SRAM and the ultrahigh-energy heavy-ion irradiation experiment of the two-tier vertically stacked SRAM. this study provides a theoretical framework for the detection of SEUs induced by heavy-ion irradiation in 3D-integrated devices.

Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 440
Author(s):  
Yanan Liang ◽  
Rui Chen ◽  
Jianwei Han ◽  
Xuan Wang ◽  
Qian Chen ◽  
...  

An attractive candidate for space and aeronautic applications is the high-power and miniaturizing electric propulsion technology device, the gallium nitride high electron mobility transistor (GaN HEMT), which is representative of wide bandgap power electronic devices. The cascode AlGaN/GaN HEMT is a common structure typically composed of a high-voltage depletion-mode AlGaN/GaN HEMT and low-voltage enhancement-mode silicon (Si) MOSFET connected by a cascode structure to realize its enhancement mode. It is well known that low-voltage Si MOSFET is insensitive to single event burnout (SEB). Therefore, this paper mainly focuses on the single event effects of the cascode AlGaN/GaN HEMT using technical computer-aided design (TCAD) simulation and heavy-ion experiments. The influences of heavy-ion energy, track length, and track position on the single event effects for the depletion-mode AlGaN/GaN HEMT were studied using TCAD simulation. The results showed that a leakage channel between the gate electrode and drain electrode in depletion-mode AlGaN/GaN HEMT was formed after heavy-ion striking. The enhancement of the ionization mechanism at the edge of the gate might be an important factor for the leakage channel. To further study the SEB effect in AlGaN/GaN HEMT, the heavy-ion test of a cascode AlGaN/GaN HEMT was carried out. SEB was observed in the heavy-ion irradiation experiment and the leakage channel was found between the gate and drain region in the depletion-mode AlGaN/GaN HEMT. The heavy-ion irradiation experimental results proved reasonable for the SEB simulation for AlGaN/GaN HEMT with a cascode structure.


Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1531 ◽  
Author(s):  
Chang Cai ◽  
Shuai Gao ◽  
Peixiong Zhao ◽  
Jian Yu ◽  
Kai Zhao ◽  
...  

Radiation effects can induce severe and diverse soft errors in digital circuits and systems. A Xilinx commercial 16 nm FinFET static random-access memory (SRAM)-based field-programmable gate array (FPGA) was selected to evaluate the radiation sensitivity and promote the space application of FinFET ultra large-scale integrated circuits (ULSI). Picosecond pulsed laser and high energy heavy ions were employed for irradiation. Before the tests, SRAM-based configure RAMs (CRAMs) were initialized and configured. The 100% embedded block RAMs (BRAMs) were utilized based on the Vivado implementation of the compiled hardware description language. No hard error was observed in both the laser and heavy-ion test. The thresholds for laser-induced single event upset (SEU) were ~3.5 nJ, and the SEU cross-sections were correlated positively to the laser’s energy. Multi-bit upsets were measured in heavy-ion and high-energy laser irradiation. Moreover, latch-up and functional interrupt phenomena were common, especially in the heavy-ion tests. The single event effect results for the 16 nm FinFET process were significant, and some radiation tolerance strategies were required in a radiation environment.


2014 ◽  
Author(s):  
R. G. Useinov ◽  
G. I. Zebrev ◽  
V. V. Emelyanov ◽  
A. S. Vatuev

2014 ◽  
Vol 778-780 ◽  
pp. 440-443 ◽  
Author(s):  
Manato Deki ◽  
Takahiro Makino ◽  
Kazutoshi Kojima ◽  
Takuro Tomita ◽  
Takeshi Ohshima

The leakage currents through the gate oxide of MOS capacitors fabricated on n-type 4H-Silicon Carbide (SiC) was measured under accumulation bias conditions with heavy-ion irradiation. The Linear Energy Transfer (LET) dependence of the critical electric field (Ecr) at which dielectric breakdown occurred in these capacitors with two different oxide thicknesses was evaluated. The MOS capacitors with thin gate oxide showed higherEcrvalues than those with thick gate oxide. The linear relationship between the reciprocalEcrandLETwas observed for both MOS capacitors. The slope ofLETdependence of 1/Ecrfor SiC MOS capacitors was smaller than that for Si, suggesting that SiC MOS devices are less susceptible to single-event gate rupture (SEGR) than Si MOS devices.


2017 ◽  
Vol 64 (9) ◽  
pp. 2511-2518 ◽  
Author(s):  
Rongmei Chen ◽  
Fengqi Zhang ◽  
Wei Chen ◽  
Lili Ding ◽  
Xiaoqiang Guo ◽  
...  

2011 ◽  
Vol 531 ◽  
pp. A160 ◽  
Author(s):  
A. L. F. de Barros ◽  
V. Bordalo ◽  
E. Seperuelo Duarte ◽  
E. F da Silveira ◽  
A. Domaracka ◽  
...  

2017 ◽  
Vol 12 ◽  
pp. 51-60 ◽  
Author(s):  
Hiroko Ikeda ◽  
Hikaru Souda ◽  
Anggraeini Puspitasari ◽  
Kathryn D. Held ◽  
Jun Hidema ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document