scholarly journals A Comprehensive Study on the Avalanche Breakdown Robustness of Silicon Carbide Power MOSFETs

Energies ◽  
2017 ◽  
Vol 10 (4) ◽  
pp. 452 ◽  
Author(s):  
Asad Fayyaz ◽  
Gianpaolo Romano ◽  
Jesus Urresti ◽  
Michele Riccio ◽  
Alberto Castellazzi ◽  
...  
Author(s):  
Gianpaolo Romano ◽  
Asad Fayyaz ◽  
Michele Riccio ◽  
Luca Maresca ◽  
Giovanni Breglio ◽  
...  

2001 ◽  
Vol 680 ◽  
Author(s):  
Konstantin V. Vassilevski ◽  
Alexandr V. Zorenko ◽  
Konstantinos Zekentes

ABSTRACTPulsed X-band (8.2 - 12.4 GHz) IMPATT oscillators have been fabricated and characterized. They utilized 4H-SiC diodes with single drift p+-n-n+ structures and avalanche breakdown voltages of about 290 V. The microwave oscillations appeared at a threshold current of 0.3 A. The maximum measured output power was about 300 mW at input pulse current of 0.35 A and pulse duration of 40 ns.


Author(s):  
James A. Cooper ◽  
Dallas T. Morisette ◽  
Madankumar Sampath ◽  
Cheryl A. Stellman ◽  
Stephen B. Bayne ◽  
...  

2012 ◽  
Vol 59 (6) ◽  
pp. 3258-3264 ◽  
Author(s):  
A. Akturk ◽  
J. M. McGarrity ◽  
S. Potbhare ◽  
N. Goldsman

2017 ◽  
Vol 897 ◽  
pp. 501-504 ◽  
Author(s):  
Si Yang Liu ◽  
Yi Fan Jiang ◽  
Woong Je Sung ◽  
Xiao Qing Song ◽  
B. Jayant Baliga ◽  
...  

High temperature capability of silicon carbide (SiC) power MOSFETs is becoming more important as power electronics faces wider applications in harsh environments. In this paper, comprehensive static and dynamic parameters of 1.2 kV SiC MOSFETs have been measured up to 250°C. The electrical behaviors with the temperature have been analyzed using the basic device physics and analytical models.


2018 ◽  
Vol 924 ◽  
pp. 735-738 ◽  
Author(s):  
Selamnesh Nida ◽  
Thomas Ziemann ◽  
Bhagyalakshmi Kakarla ◽  
Ulrike Grossner

When power MOSFETs experience a voltage spike initiating avalanche generation, a large amount of power is dissipated at the device junction. This leads to self-heating and lowers the threshold voltage. Some sources indicate that unintended opening of the channel creates a positive feedback, thereby increasing heat generation and leading to thermal runaway. Therefore, keeping MOSFETs off by applying a negative gate bias should improve avalanche ruggedness. In this report, this claim is investigated by comparing single pulse avalanche ruggedness of commercial 1.2 kV, 80 mΩ planar and trench MOSFETs at -10 V and 0 V off-state gate bias. Both planar and trench devices show a small increase in their breakdown voltage with negative gate bias. However, there is no significant difference in avalanche withstanding energy. Even in investigated trench gate devices where the gate oxide is susceptible to interface as well as oxide defects, keeping the gate voltage at VGS = -10 V did not result in improvements in ruggedness.


2017 ◽  
Vol 897 ◽  
pp. 143-146 ◽  
Author(s):  
Gerald Rescher ◽  
Gregor Pobegen ◽  
Thomas Aichinger ◽  
Tibor Grasser

We study the interface properties of 4H silicon carbide Si-face 0001 and a-face 11220 power MOSFETs using the charge pumping technique. MOSFETs produced on the a-face show a higher electron mobility than Si-face devices, although their charge pumping signal is 5 times higher, indicating a higher interface/border trap density. We show the main contribution to the interface/border trap density on a-face devices originates from deep states in a wide range around midgap, whereas Si-face devices show a higher and exponentially increasing interface/border state density close to the conduction band edge of 4H silicon carbide, resulting in reduced mobility.


Sign in / Sign up

Export Citation Format

Share Document