scholarly journals Architecture Optimization of Hybrid Electric Vehicles with Future High-Efficiency Engine

Energies ◽  
2018 ◽  
Vol 11 (5) ◽  
pp. 1148 ◽  
Author(s):  
Jinlong Hong ◽  
Liangchun Zhao ◽  
Yulong Lei ◽  
Bingzhao Gao
2016 ◽  
Vol 5 (2) ◽  
pp. 228-236 ◽  
Author(s):  
Takao Watanabe ◽  
Eiji Tsuchiya ◽  
Masaki Ebina ◽  
Yasumitsu Osada ◽  
Tomoyuki Toyama ◽  
...  

Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1569 ◽  
Author(s):  
Sajib Chakraborty ◽  
Hai-Nam Vu ◽  
Mohammed Mahedi Hasan ◽  
Dai-Duong Tran ◽  
Mohamed El Baghdadi ◽  
...  

This article reviews the design and evaluation of different DC-DC converter topologies for Battery Electric Vehicles (BEVs) and Plug-in Hybrid Electric Vehicles (PHEVs). The design and evaluation of these converter topologies are presented, analyzed and compared in terms of output power, component count, switching frequency, electromagnetic interference (EMI), losses, effectiveness, reliability and cost. This paper also evaluates the architecture, merits and demerits of converter topologies (AC-DC and DC-DC) for Fast Charging Stations (FCHARs). On the basis of this analysis, it has found that the Multidevice Interleaved DC-DC Bidirectional Converter (MDIBC) is the most suitable topology for high-power BEVs and PHEVs (> 10kW), thanks to its low input current ripples, low output voltage ripples, low electromagnetic interference, bidirectionality, high efficiency and high reliability. In contrast, for low-power electric vehicles (<10 kW), it is tough to recommend a single candidate that is the best in all possible aspects. However, the Sinusoidal Amplitude Converter, the Z-Source DC-DC converter and the boost DC-DC converter with resonant circuit are more suitable for low-power BEVs and PHEVs because of their soft switching, noise-free operation, low switching loss and high efficiency. Finally, this paper explores the opportunity of using wide band gap semiconductors (WBGSs) in DC-DC converters for BEVs, PHEVs and converters for FCHARs. Specifically, the future roadmap of research for WBGSs, modeling of emerging topologies and design techniques of the control system for BEV and PHEV powertrains are also presented in detail, which will certainly help researchers and solution engineers of automotive industries to select the suitable converter topology to achieve the growth of projected power density.


2022 ◽  
Vol 7 (1) ◽  
pp. 6
Author(s):  
Sivakumar Rajagopal ◽  
Rameez Pulapparambil Vallikkattil ◽  
M. Mohamed Ibrahim ◽  
Dimiter Georgiev Velev

For hybrid electric vehicles, supercapacitors are an attractive technology which, when used in conjunction with the batteries as a hybrid system, could solve the shortcomings of the battery. Supercapacitors would allow hybrid electric vehicles to achieve high efficiency and better power control. Supercapacitors possess very good power density. Besides this, their charge-discharge cycling stability and comparatively reasonable cost make them an incredible energy-storing device. The manufacturing strategy and the major parts like electrodes, current collector, binder, separator, and electrolyte define the performance of a supercapacitor. Among these, electrode materials play an important role when it comes to the performance of supercapacitors. They resolve the charge storage in the device and thus decide the capacitance. Porous carbon, conductive polymers, metal hydroxide, and metal oxides, which are some of the usual materials used for the electrodes in the supercapacitors, have some limits when it comes to energy density and stability. Major research in supercapacitors has focused on the design of stable, highly efficient electrodes with low cost. In this review, the most recent electrode materials used in supercapacitors are discussed. The challenges, current progress, and future development of supercapacitors are discussed as well. This study clearly shows that the performance of supercapacitors has increased considerably over the years and this has made them a promising alternative in the energy sector.


2021 ◽  
Vol 11 (21) ◽  
pp. 9934
Author(s):  
Hyun Woo WON

By combining a clean fuel such as gasoline with a high efficiency thermodynamic cycle (compression ignition), it is possible to demonstrate a powertrain that is clean and efficient, thus breaking the historical trade-off between decreasing CO2 and reducing criteria pollutants. The gasoline compression ignition (GCI) engine is a promising technology that can be used to improve thermal efficiency while reducing emissions. Its low temperature combustion does however lead to several problems that need to be overcome. The present study relates to a method and system for combining the advantages of GCI engine technology into a hybrid electric vehicle (HEV) to maximize the benefits. A plausible path is to operate the GCI engine at conditions where the benefits of a GCI engine could be maximized and where an electric motor can supplement the conditions where the GCI is less beneficial. In this study, GCI engines with different cetane number (CN) fuels were selected, and a hybrid simulation tool was used to address the potential of the GCI engines into hybrid electric vehicles. Co-developments can demonstrate efficiency and emission solutions through the achievements of the study, which will address examples of the competitive powertrain and will introduce more than 30% of CO2 reduction vehicle by 2030.


Sign in / Sign up

Export Citation Format

Share Document