scholarly journals Multi-Objective Optimisation of the Energy Performance of Lightweight Constructions Combining Evolutionary Algorithms and Life Cycle Cost

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1863 ◽  
Author(s):  
Rui Oliveira ◽  
António Figueiredo ◽  
Romeu Vicente ◽  
Ricardo Almeida

This paper discusses the thermal and energy performance of a detached lightweight building. The building was monitored with hygrothermal sensors to collect data for building energy model calibration. The calibration was performed using a dynamic simulation through EnergyPlus® (EP) (Version 8.5, United States Department of Energy (DOE), Washington, DC, USA) with a hybrid evolutionary algorithm to minimise the root mean square error of the differences between the predicted and real recorded data. The results attained reveal a good agreement between predicted and real data with a goodness of fit below the limits imposed by the guidelines. Then, the evolutionary algorithm was used to meet the compliance criteria defined by the Passive House standard for different regions in Portugal’s mainland using different approaches in the overheating evaluation. The multi-objective optimisation was developed to study the interaction between annual heating demand and overheating rate objectives to assess their trade-offs, tracing the Pareto front solution for different climate regions throughout the whole of Portugal. However, the overheating issue is present, and numerous best solutions from multi-objective optimisation were determined, hindering the selection of a single best option. Hence, the life cycle cost of the Pareto solutions was determined, using the life cycle cost as the final criterion to single out the optimal solution or a combination of parameters.

Forests ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 723 ◽  
Author(s):  
Giovanna Medeiros ◽  
Thiago Florindo ◽  
Edson Talamini ◽  
Arthur Fett Neto ◽  
Clandio Ruviaro

In order to meet the growing global demand for bioproducts, areas of forests planted for productive purposes tend to increase worldwide. However, there are several controversies about the possible negative impacts of such forests, such as invasive potential, influence on water balance and biodiversity, and competition with other types of land use. As a result, there is a need to optimize land use, in order to achieve improvements in terms of sustainability in the broadest sense. In this study, the environmental and economic performances of pine and eucalyptus forest production systems for multiple purposes are compared aiming an optimized allocation of land use in the Center-West Region of Brazil. Life cycle assessment, life cycle cost and analysis of financial and economic indicators were used to assess potential environmental and economic impacts, covering the agricultural and industrial phases of pine and eucalyptus forest systems managed for the production of cellulose and sawn wood and, for pine, the production of rosin and turpentine from the extraction of gumresin and by applying the kraft process. Subsequently, the TOPSIS multicriteria decision-making method was applied to rank production systems in different combinations of phases and criteria, and multi-objective optimization was used to allocate land use according to different restrictions of areas and efficiency. The adoption of cleaner energy sources and the use of more efficient machines, equipment and vehicles are the main solutions to improve the environmental and economic performance of the forestry sector. The production systems of pine for cellulose and pine for sawn wood, rosin and turpentine were identified as the best solutions to optimize land use. For this reason, they must be considered as alternatives for the expansion and diversification of the Brazilian forest productive chain.


Buildings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 105 ◽  
Author(s):  
Nadia MIRABELLA ◽  
Martin RÖCK ◽  
Marcella Ruschi Mendes SAADE ◽  
Carolin SPIRINCKX ◽  
Marc BOSMANS ◽  
...  

Globally, the building sector is responsible for more than 40% of energy use and it contributes approximately 30% of the global Greenhouse Gas (GHG) emissions. This high contribution stimulates research and policies to reduce the operational energy use and related GHG emissions of buildings. However, the environmental impacts of buildings can extend wide beyond the operational phase, and the portion of impacts related to the embodied energy of the building becomes relatively more important in low energy buildings. Therefore, the goal of the research is gaining insights into the environmental impacts of various building strategies for energy efficiency requirements compared to the life cycle environmental impacts of the whole building. The goal is to detect and investigate existing trade-offs in current approaches and solutions proposed by the research community. A literature review is driven by six fundamental and specific research questions (RQs), and performed based on two main tasks: (i) selection of literature studies, and (ii) critical analysis of the selected studies in line with the RQs. A final sample of 59 papers and 178 case studies has been collected, and key criteria are systematically analysed in a matrix. The study reveals that the high heterogeneity of the case studies makes it difficult to compare these in a straightforward way, but it allows to provide an overview of current methodological challenges and research gaps. Furthermore, the most complete studies provide valuable insights in the environmental benefits of the identified energy performance strategies over the building life cycle, but also shows the risk of burden shifting if only operational energy use is focused on, or when a limited number of environmental impact categories are assessed.


Author(s):  
Mark Salisbury

This chapter describes a framework for managing the life cycle of knowledge in global organizations. The approaches described in this chapter were initially used to successfully build a knowledge dissemination system for the laboratories and facilities that are under the direction of the United States Department of Energy (DOE) (Salisbury & Plass, 2001). The follow-on work to this effort was the development of a collaboration application that fed the dissemination system for the DOE laboratories and facilities. The resulting system managed the life cycle (creation, preservation, dissemination and application) of knowledge for the DOE laboratories and facilities (Salisbury, 2003). While seen as a highly successful system, a significant problem was the difficulty in identifying the right knowledge that needed to get to the right people at the right time. This is also a significant problem for global organizations that need to share their knowledge across international boundaries. What is needed to solve this problem for global organizations is a systemic way that can be applied as an organizational strategy to identify this knowledge, the people that needed it, and the time it should be accessible. This chapter focuses on the use of performance objectives for managing the “right” knowledge in a global organization. In the next section, the background of the projects that inspired the framework is introduced. Next, the framework itself is discussed: the theoretical foundation for the framework, Work Processes, Learning Processes, and Methodologies for managing the life cycle of knowledge in a global organization. (For a full discussion of this approach in book form, see Salisbury, 2009).


Energies ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 2218 ◽  
Author(s):  
Lina La Fleur ◽  
Patrik Rohdin ◽  
Bahram Moshfegh

This study addresses the life cycle costs (LCC) of energy renovation, and the demolition and construction of a new building. A comparison is made between LCC optimal energy renovations of four different building types with thermal performance, representing Swedish constructions from the 1940s, 1950s, 1960s, and 1970s, as well as the demolition of the building and construction of a new building that complies with the Swedish building code. A Swedish multi-family building from the 1960s is used as a reference building. LCC optimal energy renovations are identified with energy saving targets ranging between 10% and 70%, in addition to the lowest possible life cycle cost. The analyses show that an ambitious energy renovation is not cost-optimal in any of the studied buildings, if achieving the lowest LCC is the objective function. The cost of the demolition and construction of a new building is higher compared to energy renovation to the same energy performance. The higher rent in new buildings does not compensate for the higher cost of new construction. A more ambitious renovation is required in buildings that have a shape factor with a high internal volume to heated floor area ratio.


2011 ◽  
Vol 121-126 ◽  
pp. 2223-2227 ◽  
Author(s):  
Chun Sheng Zhu ◽  
Qi Zhang ◽  
Fan Tun Su ◽  
Hong Liang Ran

By weighing reliability, maintainability, availability and life-cycle cost of equipment which are influenced by testability,the testability indexes of system level BIT are determined on the basis of maximum system reliability & maintainability and minimum the life-circle cost. The influence mathematical models of system reliability, maintainability, availability and life-circle cost are established. According to these mathematical models, the multi-objective optimization model of system-level BIT testability indexes is established. The multi-objective optimization model is solved using Non-dominated Sorting Genetic Algorithm II, and the validity of the multi-objective optimization model is proved through an example.


2019 ◽  
Vol 111 ◽  
pp. 03065
Author(s):  
Yiğit Yılmaz ◽  
Burcu Çiğdem Yılmaz

The importance of building energy performance has been substantially increasing in the last decades due to the global warming. Therefore, buildings within the existing stock and the new buildings are encouraged to achieve the energy performance restrictions and efficiency levels. In this context, a social housing archetype (Harct), which is constructed in each climate region of Turkey with a common design approach for temperate climate region, is evaluated as a base case to improve the energy performance for the cold climate region by the optimization of the life cycle cost (LCC). It is, namely, aimed to not only improve the energy performance of the archetype but also to ensure optimal cost efficiency as significant criterion. It is focused to optimize the façades of the Harct in terms of window width, and optic and thermo-physical properties of the façade with determining the efficient insulation thickness level for exterior walls and efficient glazing types for windows. Firstly, façade design is analysed to find out the minimum and maximum windows’ widths to achieve the optimal window sizes. Secondly, optic and thermo-physical properties and cost data of the opaque and transparent façade elements have been designated among the market products in accordance with the current regulations. Energy model of the building has been run by Energy Plus simulation tool, in order to integrate it with GenOpt for optimization. Optimization was performed to carry out efficient frontier cases. The results were evaluated from life cycle cost (LCC) and energy efficiency point of view to highlight the cost optimal point


Author(s):  
Baran Yeter ◽  
Yordan Garbatov ◽  
Carlos Guedes Soares

The present work carries out a multi-objective design optimization of a monopile offshore wind turbine support structure. Three objective functions are created related to the minimization of the total construction cost of the monopile support structure, fatigue damage, and permissible stress ratio. The construction cost takes into account the costs associated with welding and labor. The constructional limitations in the offshore industry take into consideration in the selection of the upper boundaries of the design variables. The reliability index is employed to identify the topology of the structure as a part of the Pareto frontier solution in reducing the failure probability for the critical limit states and satisfying the target reliability level. A risk-based assessment of the optimal designs is performed and the output is used to update the life-cycle cost assessment. The ultimate optimization target is deemed to be the minimization of the levelised cost of energy, which is estimated based on the discounted cash-flow method considering the life-cycle costs constituting CAPEX and OPEX.


Author(s):  
Swati Sirsant ◽  
M. Janga Reddy

Abstract Designing the Water Distribution Networks (WDNs) consists of finding out pipe sizes such that the demands are satisfied and the desired performance levels are achieved at minimum cost. However, WDNs are subject to many future changes such as an increase (or decrease) in demand due to population change and migration, changes in water availability due to seasonal and climatic change, etc. Thus, the capacity expansion of WDNs needs to be performed such that the cost of interventions made is minimum while satisfying the demand and performance requirements at various time periods. Therefore, the current study proposed a Dynamic Programming (DP) framework for capacity expansion of WDNs and solved using Multi-Objective Self Adaptive Differential Evolution (MOSADE). The methodology is tested on three benchmark WDNs, namely Two-loop (TL), GoYang, and Blacksburg (BLA) WDNs, and applied to a real case study of the Badlapur region Maharashtra, India. The results show that the proposed methodology leads to effective Pareto optimal fronts, making it an efficient method for solving WDN expansion problems. Subsequently, an Analytical Hierarchy Process (AHP) based multi-criteria decision-making (MCDM) analysis was performed on the obtained Pareto-optimal solutions to determine the most suitable solution based on three criteria: Life Cycle Cost (LCC) of expansions, hydraulic reliability, and mechanical reliability. The main advantage of the proposed methodology is its capability to consider hydraulic performance as well as structural integrity and demand satisfaction in the face of hydraulic and mechanical failures.


Sign in / Sign up

Export Citation Format

Share Document