scholarly journals A Methodology Based on Cyclostationary Analysis for Fault Detection of Hydraulic Axial Piston Pumps

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1874 ◽  
Author(s):  
Paolo Casoli ◽  
Andrea Bedotti ◽  
Federico Campanini ◽  
Mirko Pastori

Condition monitoring has been an active area of research in many industrial fields during the last decades, particularly in fluid power systems. This paper presents a solution for the fault diagnosis of a variable displacement axial-piston pump, which is a critical component in many hydraulic systems. The proposed methodology follows a data-driven approach including data acquisition and feature extraction and is based on the analysis of acceleration signals through the theory of cyclostationarity. An experimental campaign was carried out on a laboratory test bench with the pump in the flawless state and in faulty states. Different operating conditions were considered and each test was repeated several times in order to acquire a suitable population to verify data repeatability. Results showed the capability of the proposed approach of detecting a typical fault related to worn slippers. Future works will include tests in order to apply the approach to a wider set of faults and the development of a classifier for accurate fault identification.

2006 ◽  
Vol 129 (4) ◽  
pp. 456-468 ◽  
Author(s):  
Alessandro Roccatello ◽  
Salvatore Mancò ◽  
Nicola Nervegna

Analysis of a variable displacement axial piston pump, as in other complex fluid power and mechanical systems, requires appropriate insight into three multidisciplinary domains, i.e., hydraulics, mechanics and tribology. In recent years, at FPRL, modelling of axial piston pumps has evolved in AMESim (one-dimensional code) where a three-dimensional mechanical approach has required generation of proprietary libraries leading to the evaluation of internal forces/reactions in all pump subsystems. Tribologic aspects in axial piston pumps modelling are also being investigated but AMESim, in this respect, does not appear as the appropriate computational environment. Consequently, a new approach has been initiated grounded on MSC.ADAMS. In this perspective, the paper details how the model has been developed through proprietary macros that automatically originate all pump subsystems parametrically and further apply required constraints and forces (springs, contacts and pressure forces). The ADAMS environment has also been selected due to co-simulation capabilities with AMESim. Accordingly, the paper elucidates how the entire modelling has been construed where hydraulics is managed in AMESim while ADAMS takes care of mechanics. A comparison between simulated and experimental steady-state characteristics of the axial pump is also presented. As such this paper indicates an innovative methodology for the analysis of complex fluid power systems in the hope that, eventually, tribology will also fit into the scene.


Author(s):  
Jessica Gissella Maradey Lázaro ◽  
Carlos Borrás Pinilla ◽  
Sebastian Roa Prada

Axial piston variable displacement pumps (VDAP) are the heart of every hydraulic system, and are they commonly used in the industry for its high capacity, efficiency (volume and total), and good performance in the handling of high pressures and speeds. Faults are usually associated with wear and leakage processes, which cause significant decreases in performance. This paper discusses about the advantages to implement a Condition-based Maintenance (CBM) and the use of techniques of fault diagnosis in axial variable displacement piston pumps (VDAP), as they are: Neural Networks (NN), Support Vector Machine (SVM) and Fuzzy Logic (FL) and other hybrid models. The results of this investigation provide guidelines for the selection of the most suitable technique to prevent faults in VDAP in order to help reducing down time, increase productivity and competitiveness of companies that requires the use of fluid power systems by enabling the implementation of a non-intrusive fault diagnosis management system, which must be reliable, economical and easily accessible to the industry.


Author(s):  
Alessandro Roccatello ◽  
Salvatore Manco` ◽  
Nicola Nervegna

Analysis of a variable displacement axial piston pump, as in other complex fluid power and mechanical systems, requires appropriate insight into three multidisciplinary domains, i.e. hydraulics, mechanics and tribology. In recent years, at FPRL, modelling of axial piston pumps has evolved in AMESim (one dimensional code) where a three dimensional mechanical approach has required generation of proprietary libraries leading to the evaluation of internal forces/reactions in all pump subsystems. Tribologic aspects in axial piston pumps modelling are also being investigated but AMESim, in this respect, does not appear as the appropriate computational environment. Consequently, a new approach has been initiated grounded on MSC.ADAMS. In this perspective, the paper details how the model has been developed through proprietary macros that automatically originate all pump subsystems parametrically and further apply required constraints and forces (springs, contacts and pressure forces). The ADAMS environment has also been selected due to co-simulation capabilities with AMESim. Accordingly, the paper elucidates how the entire modelling has been construed where hydraulics is managed in AMESim while ADAMS takes care of mechanics. As such this paper indicates an innovative methodology for the analysis of complex fluid power systems in the hope that, eventually, tribology will also fit into the scene.


Author(s):  
Janne Koivumäki ◽  
Jouni Mattila

This paper proposes, for the first time without using any linearization or order reduction, an adaptive and model-based discharge pressure control design for the variable displacement axial piston pumps (VDAPPs), whose dynamical behaviors are highly nonlinear and can be described by a fourth-order differential equation. The rigorous stability proof, with an asymptotic convergence, is given for the entire system. In the proposed novel controller design method, the specifically designed stabilizing terms constitute an essential core to cancel out all the stability-preventing terms. The experimental results reveal that rapid parameter adaptation significantly improves the feedback signal tracking precision compared to a known-parameter controller design. In the comparative experiments, the adaptive controller design demonstrates the state-of-the-art discharge pressure control performance, enabling a possibility for energy consumption reductions in hydraulic systems driven with VDAPP.


Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 953 ◽  
Author(s):  
Paolo Casoli ◽  
Mirko Pastori ◽  
Fabio Scolari ◽  
Massimo Rundo

In recent years, the interest of industry towards condition-based maintenance, substituting traditional time-based maintenance, is growing. Indeed, condition-based maintenance can increase the system uptime with a consequent economic advantage. In this paper, a solution to detect the health state of a variable displacement axial-piston pump based on vibration signals is proposed. The pump was tested on the test bench in different operating points, both in healthy and faulty conditions, the latter obtained by assembling damaged components in the pump. The vibration signals were acquired and exploited to extract features for fault identification. After the extraction, the obtained features were reduced to decrease the computational effort and used to train different types of classifiers. The classification algorithm that presents the greater accuracy with reduced features was identified. The analysis has also showed that using the time sampling raw signal, a satisfying accuracy could be obtained, which will permit onboard implementation. Results have shown the capability of the algorithm to identify which fault occurred in the system (fault identification) for each working condition. In future works, the classification algorithm will be implemented onboard to validate its effectiveness for the online identification of the typical incipient faults in axial-piston pumps.


2012 ◽  
Vol 134 (11) ◽  
Author(s):  
Shu Wang

The volumetric efficiency is one of the most important aspects of system performance in the design of axial piston pumps. From the standpoint of engineering practices, the geometric complexities of the valve plate (VP) and its multiple interactions with pump dynamics pose difficult obstacles for optimization of the design. This research uses the significant concept of pressure carryover to develop the mathematical relationship between the geometry of the valve plate and the volumetric efficiency of the piston pump. For the first time, the resulting expression presents the theoretical considerations of the fluid operating conditions, the efficiency of axial piston pumps, and the valve plate designs. New terminology, such as discrepancy of pressure carryover (DPC) and carryover cross-porting (CoCp), is introduced to explain the fundamental principles. The important results derived from this study can provide clear recommendations for the definition of the geometries required to achieve an efficient design, especially for the valve plate timings. The theoretical results are validated by simulations and experiments conducted by testing multiple valve plates under various operating conditions.


Author(s):  
Heikki O. J. Kauranne ◽  
Jyrki T. Kajaste ◽  
Asko U. Ellman ◽  
Matti T. Pietola

It is commonly known that the characteristics of a fluid power pump depend on pump type, pressure, rotational speed and displacement. But in addition to these, also all the other parameters or factors associated with the operating conditions may have a significant effect on the characteristics. The most important of these are the pump construction and size, operating point temperature and the characteristics of the oil, which also depend on temperature and pressure. The aim of this study is to show the effects that the varying operational conditions have on the characteristics of a axial piston pump, to compare the measured characteristics with other published characteristics of axial piston pumps and to study the capability of pump models to represent these characteristics. The results include information of the effects of fluid temperature, type of fluid and the setting value of the displacement on the pump characteristics along with the effects of pressure and rotational speed. The sensitivity of the pump to each of the parameters is discussed. The effect of limited information of pump characteristics on the reliability of simulation results is studied using the Schlo¨sser models.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1084
Author(s):  
Chuanqi Lu ◽  
Zhi Zheng ◽  
Shaoping Wang

Axial piston pumps are crucial for the safe operation of hydraulic systems and usually work under variable operating conditions. However, deterioration status recognition for such pumps under variable conditions has rarely been reported until now. Therefore, it is valuable to develop effective methods suitable for processing variable conditions. Firstly, considering that information entropy has strong robustness to variable conditions and empirical mode decomposition (EMD) has the advantages of processing nonlinear and nonstationary signals, a new degradation feature parameter, named local instantaneous energy moment entropy, which combines information entropy theory and EMD, is proposed in this paper. To obtain more accurate degradation feature, a waveform matching extrema mirror extension EMD, which is used to suppress the end effects of EMD decomposition, was employed to decompose the original pump’s outlet pressure signals, taking the quasi-periodic characteristics of the signals into consideration. Subsequently, given that different failure modes of pumps have different degradation rates in practice, which makes it difficult to effectively recognize degradation status when using the modeling methods that need the normal and failure data, a Gaussian mixture model (GMM), which has no need for failure data when building a degradation identification model, was introduced to capture the new degradation status index (DSI) to quantitatively assess the degradation state of the pumps. Finally, the effectiveness of the proposed approach was validated using both simulations and experiments. It was demonstrated that the defined local instantaneous energy moment entropy is able to effectively characterize the degree of degradation of the pumps under variable operating conditions, and the DSI derived from the GMM is able to accurately identify different degradation states when compared with the previously published methods.


Sign in / Sign up

Export Citation Format

Share Document