scholarly journals Comparative Study of AC and Positive and Negative DC Visual Corona for Sphere-Plane Gaps in Atmospheric Air

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2671 ◽  
Author(s):  
Jordi-Roger Riba ◽  
Andrea Morosini ◽  
Francesca Capelli

Due to the expansion of high-voltage direct current (HVDC) power systems, manufacturers of high-voltage (HV) hardware for alternating current (ac) applications are focusing their efforts towards the HVDC market. Because of the historical preponderance of ac power systems, such manufacturers have a strong background in ac corona but they need to acquire more knowledge about direct current (dc) corona. Due to the complex nature of corona, experimental data is required to describe its behavior. This work performs an experimental comparative analysis between the inception of ac corona and positive and negative dc corona. First, the sphere-plane air gap is analyzed from experimental data, and the corona inception voltages for different geometries are measured in a high-voltage laboratory. Next, the surface electric field strength is determined from finite element method simulations, since it provides valuable information about corona inception conditions. The experimental data obtained are fitted to an equation based on Peek’s law, which allows determining the equivalence between the visual corona surface electric field strength for ac and dc supply. Finally, additional experimental results performed on substation connectors are presented to further validate the previous results by means of commercial high-voltage hardware. The results presented in this paper could be especially valuable for high-voltage hardware manufacturers, since they allow determining the dc voltage and electric field values at which their ac products can withstand free of corona when operating in dc grids.

2019 ◽  
Vol 89 (10) ◽  
pp. 1556
Author(s):  
Н.А. Тимофеев ◽  
В.С. Сухомлинов ◽  
G. Zissis ◽  
И.Ю. Мухараева ◽  
Д.В. Михайлов ◽  
...  

AbstractWe have studied a high- (ultrahigh-) pressure short-arc discharge in xenon with thoriated tungsten cathodes. A system of equations formulated based on earlier experimental data indicating possible emission of cathode material (thorium) into the discharge gap has made it possible to determine the electric field strength, plasma temperature, and concentration of thorium atoms as well as thorium and xenon ions in the plasma. The problem has been solved for a model discharge between planar electrodes. The results indicate the key role of thorium atoms in the cathode region. Thorium atoms determine the ionization balance and other electrokinetic properties of plasma. Emission of thorium atoms reduces the plasma temperature at the cathode, which turns out to be noticeably lower than the plasma temperature near the anode; this is a new result that agrees with experimental data. Other electrokinetic characteristics of the plasma (in particular, charged particle concentration and electric field strength) are also in good agreement with the experiment.


Author(s):  
Christoph Jörgens ◽  
Markus Clemens

Purpose In high voltage direct current (HVDC), power cables heat is generated inside the conductor and the insulation during operation. A higher amount of the generated heat in comparison to the dissipated one, results in a possible thermal breakdown. The accumulation of space charges inside the insulation results in an electric field that contributes to the geometric electric field, which comes from the applied voltage. The total electric field decreases in the vicinity of the conductor, while it increases near the sheath, causing a possible change of the breakdown voltage. Design/methodology/approach Here, the thermal breakdown is studied, also incorporating the presence of space charges. For a developed electro-thermal HVDC cable model, at different temperatures, the breakdown voltage is computed through numerical simulations. Findings The simulation results show a dependence of the breakdown voltage on the temperature at the location of the sheath. The results also show only limited influence of the space charges on the breakdown voltage. Research limitations/implications The study is restricted to one-dimensional problems, using radial symmetry of the cable, and does not include any aging or long-term effect of space charges. Such aging effect can locally increase the electric field, resulting in a reduced breakdown voltage. Originality/value A comparison of the breakdown voltage with and without space charges is novel. The chosen approach allows for the first time to assess the influence of space charges and field inversion on the thermal breakdown.


RSC Advances ◽  
2014 ◽  
Vol 4 (97) ◽  
pp. 54603-54613 ◽  
Author(s):  
Arie Meir ◽  
Boris Rubinsky

Electroporation of biological solutions is typically performed using galvanically coupled electrodes and the administration of high-voltage, direct current (DC) pulses.


Sign in / Sign up

Export Citation Format

Share Document