scholarly journals An Overview on Polymer Retention in Porous Media

Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2751 ◽  
Author(s):  
Sameer Al-Hajri ◽  
Syed Mahmood ◽  
Hesham Abdulelah ◽  
Saeed Akbari

Polymer flooding is an important enhanced oil recovery technology introduced in field projects since the late 1960s. The key to a successful polymer flood project depends upon proper estimation of polymer retention. The aims of this paper are twofold. First, to show the mechanism of polymer flooding and how this mechanism is affected by polymer retention. Based on the literature, the mobility ratio significantly increases as a result of the interactions between the injected polymer molecules and the reservoir rock. Secondly, to provide a better understanding of the polymer retention, we discussed polymer retention types, mechanisms, factors promoting or inhibiting polymer retention, methods and modeling techniques used for estimating polymer retention.

Author(s):  
E.F. Veliyev ◽  

Polymer flooding is one of the main enhanced oil recovery methods that have been actively used since the late 1960s. However, despite the significant gained experience of both laboratory and field research, this technology still continues to develop from year to year, revealing more and more new factors and challenges that are necessary aspects for successful implementation. Estimation of retained polymer amount by the porous medium is one of the key factors. The article discusses the main mechanisms and factors affecting retention process, as well as methods for determining the amount of retained polymer when flooding the solution through porous medium in laboratory conditions.


1972 ◽  
Vol 12 (05) ◽  
pp. 448-452 ◽  
Author(s):  
Rapier Dawson ◽  
Ronald B. Lantz

Abstract We have found that solutions of typical waterflooding polymers do not occupy all of the connected pore volume in porous media. The remainder of the pore volume is inaccessible to polymer. This inaccessible pore volume is occupied polymer. This inaccessible pore volume is occupied by water that contains no polymer, but is otherwise in equilibrium with the polymer solution. This allows changes in polymer concentration to be propagated through porous media more rapidly than propagated through porous media more rapidly than similar changes in salt concentration. At the front edge of a polymer bank the effect of inaccessible pore volume opposes the effect of adsorption and pore volume opposes the effect of adsorption and may completely remove it in some cases. This paper presents three experimental polymer floods showing the effect of inaccessible pore volume in the presence of varying amounts of adsorption. Results of these floods clearly show that about 30 percent of the connected pore volume in the rock samples used was not accessible to The polymer solutions. The changes required to include polymer solutions. The changes required to include inaccessible pore volume in mathematical models of polymer flow and in held prediction methods are discussed. Introduction One way o improving the mobility ratio during waterflooding operations is by addition of a water-soluble polymer to the flood water. Several different polymers have been proposed and a number of investigators have presented results on the behavior of these polymer solutions in porous media. In addition, mathematical models have been developed for predicting the field behavior of polymer flooding. In all these studies movement polymer flooding. In all these studies movement of the polymer bank through the reservoir rock is of great importance. One phenomenon that has been repeatedly observed in polymer flooding is the removal of polymer from solution by adsorption on the reservoir rock. As a polymer bank propagates through porous media, the polymer bank propagates through porous media, the front edge is gradually denuded of polymer. The amount of polymer lost from a bank may be large or small, depending on the nature of the polymer and rock surface. This loss of polymer must be measured and included in any realistic mathematical model of polymer behavior. It has been widely assumed that polymer behavior. It has been widely assumed that adsorption is the most significant factor causing polymer to propagate through porous media at a polymer to propagate through porous media at a velocity different from that of water. In this paper we present data that demonstrate that all of the pores may not be accessible to polymer molecules and that this "inaccessible polymer molecules and that this "inaccessible pore volume" can affect polymer propagation pore volume" can affect polymer propagation significantly. In addition to the experimental results, we discuss the changes in interpretation and in mathematical models that are required to include this phenomenon. EXPERIMENTAL The experiments described in this paper were single-phase displacement of polymer solutions through consolidated sandstone. All the cores were prepared by evacuating and saturating with brine; prepared by evacuating and saturating with brine; the pore volumes of the cores were measured at this time. The experimental floods reported here were then done in three steps.An "initial solution" was injected until the core was at complete equilibrium with that solution.A bank of a different solution was injected into the core.Injection of the initial solution was resumed and continued until the end of the experiment. During each experiment the effluent from the core was collected in small samples; the analyses of these samples for polymer and salt content gave the basic data which is presented here. In plotting the results we used a "concentration fraction" defined as (Ce -Ci)/(Cb -Ci), where C is concentration and the subscripts e, i and b refer to the effluent, initial inlet and bank inlet values, respectively. All the solutions used were mixed in distilled water; concentrations are given in weight percent or in ppm by weight. Two polymers were used; one was a polyacrylamide (Pusher 700, The Dow Chemical Co.); the other a polysaccharide (XC biopolymer, Xanco, Div. of Kelco Co.). SPEJ P. 448


Nanomaterials ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1975 ◽  
Author(s):  
Muhammad Adil ◽  
Kean Chuan Lee ◽  
Hasnah Mohd Zaid ◽  
Takaaki Manaka

The utilization of metal-oxide nanoparticles in enhanced oil recovery (EOR) has generated considerable research interest to increase the oil recovery. Among these nanoparticles, alumina nanoparticles (Al2O3-NPs) have proved promising in improving the oil recovery mechanism due to their prominent thermal properties. However, more significantly, these nanoparticles, coupled with electromagnetic (EM) waves, can be polarized to reduce water/oil mobility ratio and create disturbances at the oil/nanofluid interface, so that oil can be released from the reservoir rock surfaces and travelled easily to the production well. Moreover, alumina exists in various transition phases (γ, δ, θ, κ, β, η, χ), providing not only different sizes and morphologies but phase-dependent dielectric behavior at the applied EM frequencies. In this research, the oil recovery mechanism under EM fields of varying frequencies was investigated, which involved parameters such as mobility ratio, interfacial tension (IFT) and wettability. The displacement tests were conducted in water-wet sandpacks at 95 °C, by employing crude oil from Tapis. Alumina nanofluids (Al2O3-NFs) of four different phases (α, κ, θ and γ) and particle sizes (25–94.3 nm) were prepared by dispersing 0.01 wt. % NPs in brine (3 wt. % NaCl) together with SDBS as a dispersant. Three sequential injection scenarios were performed in each flooding scheme: (i) preflushes brine as a secondary flooding, (ii) conventional nano/EM-assisted nanofluid flooding, and (iii) postflushes brine to flush NPs. Compared to conventional nanofluid flooding (3.03–11.46% original oil in place/OOIP) as incremental oil recovery, EM-assisted nanofluid flooding provided an increase in oil recovery by approximately 4.12–12.90% of OOIP for different phases of alumina. It was established from these results that the recovery from EM-assisted nanofluid flooding is itself dependent on frequency, which is associated with good dielectric behavior of NPs to formulate the oil recovery mechanism including (i) mobility ratio improvement due to an electrorheological (ER) effect, (ii) interfacial disturbances by the oil droplet deformation, and (iii) wettability alteration by increased surface-free energy.


2015 ◽  
Vol 8 (1) ◽  
pp. 45-50 ◽  
Author(s):  
Junjian Li ◽  
Hanqiao Jiang ◽  
Qun Yu ◽  
Fan Liu ◽  
Hongxia Liu

Polymer flood gains expansive popularity as a promising EOR method in various oilfields worldwide. However, there are still substantial amount of resources underground after polymer application. To further enhance oil recovery, secondary chemicals are sometimes utilized to sweep the remaining hydrocarbons to maintain the consistent development of oilfields. In this paper, a series of experiments are established and conducted to explore the feasibility of surfactant/ polymer flooding applied to a polymer flooded reservoir, and also the influence of polymer retention in porous media to enhance the oil recovery performance of subsequent chemical drive. The data of the experiments suggest that surfactant/polymer flooding owns a very good potential as a subsequent EOR technique, and that polymer retention in pores helps block underground water channels, improving greatly the sweeping efficiency of secondary chemical flood.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3732 ◽  
Author(s):  
Yaohao Guo ◽  
Lei Zhang ◽  
Guangpu Zhu ◽  
Jun Yao ◽  
Hai Sun ◽  
...  

Water flooding is an economic method commonly used in secondary recovery, but a large quantity of crude oil is still trapped in reservoirs after water flooding. A deep understanding of the distribution of residual oil is essential for the subsequent development of water flooding. In this study, a pore-scale model is developed to study the formation process and distribution characteristics of residual oil. The Navier–Stokes equation coupled with a phase field method is employed to describe the flooding process and track the interface of fluids. The results show a significant difference in residual oil distribution at different wetting conditions. The difference is also reflected in the oil recovery and water cut curves. Much more oil is displaced in water-wet porous media than oil-wet porous media after water breakthrough. Furthermore, enhanced oil recovery (EOR) mechanisms of both surfactant and polymer flooding are studied, and the effect of operation times for different EOR methods are analyzed. The surfactant flooding not only improves oil displacement efficiency, but also increases microscale sweep efficiency by reducing the entry pressure of micropores. Polymer weakens the effect of capillary force by increasing the viscous force, which leads to an improvement in sweep efficiency. The injection time of the surfactant has an important impact on the field development due to the formation of predominant pathway, but the EOR effect of polymer flooding does not have a similar correlation with the operation times. Results from this study can provide theoretical guidance for the appropriate design of EOR methods such as the application of surfactant and polymer flooding.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2195
Author(s):  
Lei Ding ◽  
Qianhui Wu ◽  
Lei Zhang ◽  
Dominique Guérillot

Fractional flow theory still serves as a powerful tool for validation of numerical reservoir models, understanding of the mechanisms, and interpretation of transport behavior in porous media during the Chemical-Enhanced Oil Recovery (CEOR) process. With the enrichment of CEOR mechanisms, it is important to revisit the application of fractional flow theory to CEOR at this stage. For surfactant flooding, the effects of surfactant adsorption, surfactant partition, initial oil saturation, interfacial tension, and injection slug size have been systematically investigated. In terms of polymer flooding, the effects of polymer viscosity, initial oil saturation, polymer viscoelasticity, slug size, polymer inaccessible pore volume (IPV), and polymer retention are also reviewed extensively. Finally, the fractional flow theory is applied to surfactant/polymer flooding to evaluate its effectiveness in CEOR. This paper provides insight into the CEOR mechanism and serves as an up-to-date reference for analytical modeling of the surfactant flooding, polymer flooding, and surfactant/polymer flooding CEOR process.


2021 ◽  
Vol 21 (1) ◽  
pp. 124
Author(s):  
Ahmad Tawfiequrahman Yuliansyah ◽  
Bardi Murachman ◽  
Suryo Purwono

The need for energy, especially the petroleum-based one, is steadily increasing along with population growth and technological advancement. Meanwhile, oil exploitation from oil reservoirs using primary and secondary techniques can only obtain about 30%-50 % out of the original oil in place. Enhanced Oil Recovery (EOR) is a method for increasing oil recovery from a reservoir by injecting materials that are not found in the reservoir, such as surfactant, polymer, etc. This research aims to develop a mathematical model representing two-phase flow through porous media in the EOR process. This model was extended from mass balance and fluid flow in porous media equations. The reliability of the model was then validated by water flooding and polymer flooding experiment. A porous media, constituted by a silica sand pack, was saturated with 2 % brine and sequentially flooded with HPAM polymer solution at various concentrations (5,000-15,000 ppm). The volume of the oil coming out from the media at any time intervals was measured. Validation of the model was carried out by optimizing the model parameters to obtain the best curve-fitting on the plot of the percentage of cumulative recovered oil against time. The results showed that the proposed mathematical model was reliable enough to express both water and polymer-flooding processes.


2021 ◽  
Vol 48 (1) ◽  
pp. 169-178
Author(s):  
Xiangguo LU ◽  
Bao CAO ◽  
Kun XIE ◽  
Weijia CAO ◽  
Yigang LIU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document